CoSP: A General Framework For Computational Soundness Proofs∗

Michael Backes1,3, Dennis Hofheinz2, and Dominique Unruh1
1Saarland University 2CWI 3MPI-SWS

October 30, 2009

Abstract

We describe CoSP, a general framework for conducting computational soundness proofs of symbolic models and for embedding these proofs into formal calculi. CoSP considers arbitrary equational theories and computational implementations, and it abstracts away many details that are not crucial for proving computational soundness, such as message scheduling, corruption models, and even the internal structure of a protocol. CoSP enables soundness results, in the sense of preservation of trace properties, to be proven in a conceptually modular and generic way: proving x cryptographic primitives sound for y calculi only requires x + y proofs (instead of x · y proofs without this framework), and the process of embedding calculi is conceptually decoupled from computational soundness proofs of cryptographic primitives. We exemplify the usefulness of CoSP by proving the first computational soundness result for the full-fledged applied π-calculus under active attacks. Concretely, we embed the applied π-calculus into CoSP and give a sound implementation of public-key encryption and digital signatures.

Contents

1 Introduction 2
1.1 Our contribution 2
1.2 Related work 4
1.3 Outline of the paper 5

2 A general framework for computational soundness proofs 5
2.1 Preliminaries 5
2.2 Symbolic protocols 6
2.3 Computational model 8
2.4 Computational Soundness . . 10
2.5 A Sufficient Criterion for Soundness 11

3 Case study: computational soundness of public-key encryption and signatures 14

4 Computational soundness of the applied π-calculus 29
4.1 Overview of this section 29
4.2 Review of the calculus’ syntax and semantics 30
4.3 Defining a computational execution 31
4.4 Computational soundness of the calculus 33
4.5 Computationally sound encryption and signatures in the applied π-calculus 40

5 Conclusion and future work 42

References 42

∗A short version appears at ACM CCS 2009. Partially funded by the Cluster of Excellence “Multimodal Computing and Interaction”.
1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system aspects of multiple interleaved protocol runs, awkward for humans to generate. Hence, work towards the automation of such proofs started soon after the first protocols were developed. From the start, the actual cryptographic operations in such proofs were idealized into so-called Dolev-Yao models, following [DYS83, EG83, Mer83], see, e.g., [KMM94, Sch96, AG97, Low96, Pan98, BMV04]. This idealization simplifies proofs by freeing them from cryptographic details such as computational restrictions, probabilistic behavior, and error probabilities. While it was initially not clear whether Dolev-Yao models are a sound abstraction from real cryptography with its computational security definitions, a large number of results in the last ten years helped to establish a general understanding of which cryptographic primitives can or cannot be proven computationally sound in which adversarial settings under which assumptions (see Section 1.2).

A careful inspection of this series of results, however, reveals that the soundness theorems stated in these works, and even more so the frameworks that underly these theorems, differ from each other considerably in many respects. These differences range from various ways of syntactically expressing security protocols and corresponding restrictions on the set of permitted protocol classes, to different semantics for modelling protocol communication and communication with the adversary, to different (often incomparable) notions of computational soundness, to different assumptions on the adversary’s capabilities, etc. Moreover, many of these frameworks were freshly invented in the respective papers; they hence lack support from suitable verification tools and are more likely to suffer from idiosyncracies than more established frameworks for reasoning about security protocols.

The lack of a common framework that underlies results about computational soundness complicates the thorough comparison of their strengths and limitations. Even worse, it often remains unclear whether assumptions in computational soundness results (additional randomization in the cryptographic implementation, the absence of key cycles, etc.) stem from idiosyncracies of the underlying framework, or if they constitute conceptual limitations of computational soundness results for the prevalent cryptographic definitions. Moreover, framework-specific assumptions complicate the extension of existing results to other frameworks, or to more comprehensive settings, e.g., a more expressive set of cryptographic primitives or a stronger adversary. In fact, such results are often proven from scratch again (for an extended new framework). To put it bluntly: formally asserting computational soundness of x different cryptographic primitives within y different frameworks currently requires $x \cdot y$ separate proofs.

1.1 Our contribution

A general framework for computational soundness proofs. We describe CoSP, a general framework for conducting Computational Soundness Proofs in symbolic models that enables formulating soundness results in a unified and comparable manner and for embedding these proofs into formal calculi. CoSP comprises a general definition of symbolic protocols, their symbolic and
computational execution, as well as a definition of computational soundness for trace properties.\(^2\)

CoSP does not put constraints on the symbolic model; in particular, it permits arbitrary sets of constructors, deduction rules, equational theories and computational implementations, and it is specifically designed for establishing soundness results in that it abstracts away from many details that are not crucial for proving computational soundness, such as message scheduling, corruption models, and even the internal structure of a protocol. Instead, we treat the whole protocol as a single entity that interacts with an attacker. This allows for a unified treatment of different symbolic models by embedding them into CoSP.

CoSP enables proving computational soundness results in a conceptually modular and generic way: every computational soundness proof phrased in CoSP automatically holds for all embedded calculi, and the process of embedding formal calculi is conceptually decoupled from computational soundness proofs. This is crucial since these two tasks are often tackled using different techniques and pursued by people with different backgrounds in computer science. Asserting computational soundness of \(x\) cryptographic primitives within \(y\) calculi hence requires only \(x+y\) proofs in CoSP.

We stress that we do not develop soundness results for novel cryptographic primitives or less restricted protocol classes in this paper; nor do we unify all existing soundness results. However, CoSP provides a basis for doing so. To lay the foundation, we show computational soundness for public-key encryption and digital signatures in CoSP in this paper. This shows the computational soundness of these primitives in all calculi embedded in CoSP.

Computational soundness of the applied \(\pi\)-calculus. We show how to use CoSP to establish the first computational soundness result for a full-fledged applied \(\pi\)-calculus with encryption and signatures under active attacks. We consider the process calculus proposed in [BAF08] additionally augmented with events; the calculus in [BAF08] itself is a combination of the original applied \(\pi\)-calculus [AF01] with one of its dialects [Bla04]. This combination offers the richness of the original applied \(\pi\)-calculus while additionally being accessible to state-of-the-art verification tools such as ProVerif [Bla01]; in particular, our result can be extended to arbitrary equational theories. Our result hence yields computational soundness guarantees for ProVerif.

We first give a mapping of processes in the applied \(\pi\)-calculus to CoSP protocols. This embedding is particularly instructive because the semantics of the applied \(\pi\)-calculus differ significantly from CoSP’s semantics. We then show that a process in the applied \(\pi\)-calculus is computationally sound whenever the corresponding CoSP protocol is computationally sound.

Together with the computational soundness of encryptions and digital signatures in CoSP, this implies the computational soundness of the applied \(\pi\)-calculus with encryptions and signatures. In particular, the result shows that CoSP is capable of embedding a formal calculus that is well understood and accepted by the scientific community, that is expressive enough for expressing and reasoning about state-of-the-art protocols, and that is accessible to state-of-the-art verification tools.

As an example (essentially a litmus test for our framework), we use ProVerif to analyze the entity authentication property of the Needham-Schroeder-Lowe protocol. Using the aforementioned computational soundness of public-key encryption in CoSP, this yields an implementation of this protocol within the applied \(\pi\)-calculus such that the implementation is provably secure under active attacks.

Restrictions. Currently, the CoSP-framework is restricted to integrity properties. That is, a security property is modeled as a prefix-closed set of traces, and we guarantee that if the symbolic protocol satisfies a trace property, so does its computational implementation. We do not, however, model liveness properties which guarantee that some event will eventually occur. Furthermore, we also do not cover preservation of observational equivalence as needed for, e.g.,

\(^2\)We currently only consider the preservation of trace properties in CoSP. Extending CoSP to the preservation of more sophisticated properties such as observational equivalence [CLC08] is left for future work.
anonymity properties. Finally, although we gain modularity by separating the calculus-specific part of the computational soundness proof from the part specific to the symbolic theory, the proof of the soundness of a symbolic theory itself is not modular: We cannot prove the soundness of encryption and of signatures individually and then conclude that encryptions and signatures are jointly sound.

1.2 Related work

Cryptographic underpinnings of a Dolev-Yao model were first addressed by Abadi and Rogaway in [AR02] for passive adversaries and symmetric encryption. The protocol language and security properties handled were extended in [AJ01, Lau01, HLM03, ABW06], but still apply only to passive adversaries. This excludes many of the typical ways of attacking protocols, e.g., man-in-the-middle attacks and attacks by reusing a message part in a concurrent protocol run.

A cryptographic justification of a Dolev-Yao model for arbitrary active attacks and within arbitrary surrounding interactive protocols (within the Reactive Simulatability (RSIM) Framework [BPW07]) was first given by Backes, Pfitzmann, and Waidner in [BPW03a] with extensions in [BPW03b, BP04]. Tool support for this Dolev-Yao model was subsequently added in [SBB+06]. Laud [Lau04] has subsequently presented a cryptographic underpinning for a Dolev-Yao model of symmetric encryption under active attacks. His work enjoys a direct connection with a formal proof tool, but it is specific to certain confidentiality properties and restricts the surrounding protocols to straight-line programs. Micciancio and Warinschi [MW04] and Janvier, Lakhnech, and Mazaré [LHM05] have presented cryptographic underpinnings for a Dolev-Yao model of public-key encryption. Their results are narrower than those in [BPW03a] since they are specific for public-key encryption and restricted classes of protocols, but they consider simpler real implementations. Baudet, Cortier, and Kremer [BCK05] have established the soundness of specific classes of equational theories in a Dolev-Yao model under passive attacks. Canetti and Herzog [CH06] have shown that a Dolev-Yao-style symbolic analysis can be conducted using the framework of universal composability [Can01] for a restricted class of protocols.

Subsequent work concentrated on linking symbolic and cryptographic secrecy properties. Cortier and Warinschi [CW05] have shown that symbolically secret nonces are also computationally secret, i.e., indistinguishable from a fresh random value given the view of the adversary. Backes and Pfitzmann [BP05] and Canetti and Herzog [CH06] have established new symbolic criteria for showing that a key is cryptographically secret. Laud [Lau04] has designed a type system for proving payload secrecy of security protocols based on the BFW model [BPW03a]. His work is extended to key secrecy in [BL06]. Kremer and Mazaré [KM07] have established computational soundness results for static equivalence. Aïda and Fournet [AF06] have shown computational soundness in the sense of observational equivalence of cryptographic implementations of processes. Their work does not consider explicit symbolic abstractions of cryptographic primitives, e.g., encryption keys cannot be sent, and hence does not allow for describing most existing security protocols without ruling out attacks. Cortier and Comon-Lundh [CLC08] have established computational soundness results as the preservation of observational equivalence within a fragment of the applied π-calculus. This fragment is restricted to protocols that do not branch, and it contains some non-standard extensions that are not supported by existing tools like ProVerif. Comon-Lundh [CL08a] has presented general definitions for trace properties and observational equivalence that are parametric in the underlying equational theory and the computational implementation. His definition is more restrictive than ours in that it requires the existence of a so-called trace mapping. Moreover, in contrast to our result, it does not address how to embed existing calculi like the applied π-calculus into his model.

Further work aimed at establishing computational soundness results for additional cryptographic primitives. Cortier, Kremer, Küsters, and Warinschi [CKKW06] and Backes, Pfitzmann, and Waidner [BPW06] have shown computational soundness of hash functions in the random
oracle model. Janvier, Lakhnech, and Mazaré \cite{JLM07} have shown computational soundness of hash functions under a non-standard cryptographic assumption in the standard model, i.e., without random oracles. Garcia and van Rossum \cite{GvR08} have shown computational soundness of hash functions under passive adversaries when implemented using perfect one-way hash functions \cite{CMR98}. Backes and Unruh \cite{BU09} have shown computational soundness of non-interactive zero-knowledge proofs. Bresson, Lakhnech, Mazaré, and Warinschi \cite{BLMW07} have provided a computationally sound theory for reasoning about protocols based on the decisional Diffie-Hellman assumption (DDH) for passive adversaries. Limitations of computational soundness in the sense of Reactive Simulatability were shown by Backes and Pfitzmann for hash functions \cite{BPW06} and the XOR operation \cite{BPW05}.

Recently, efforts have also been started to formulate syntactic calculi with a probabilistic, polynomial-time semantics to directly reason about cryptographic primitives/protocol, including approaches based on process algebra \cite{MMS98,LMMS98}, security logics \cite{IK03,DDM05} and cryptographic games \cite{Bla06,BP06,Cd06,Now07,BGJZ07,BBU08}. In general, this line of work is orthogonal to the work of justifying Dolev-Yao models, which offer a higher level of abstractions and thus much simpler proofs where applicable, so that proofs of larger systems can be automated.

1.3 Outline of the paper

Section 2 introduces our framework for computational soundness proofs. Section 2.5 introduces the notion of a simulator, and it identifies which properties a simulator needs to have to entail a computational soundness result. Section 3 contains a case study: how to establish the computational soundness of public-key encryption within the general framework by constructing a suitable simulator. Section 4 establishes the computational soundness of the applied π-calculus. Section 5 concludes and outlines future work.

2 A general framework for computational soundness proofs

2.1 Preliminaries

We first introduce basic notations that are used in this paper, as well as central concepts such as constructors, destructors, and deduction relations.

Notation. Given a term t and a substitution φ, we denote by $t\varphi$ the result of applying φ to t. Given a function f, $f(x := y)$ is the function f' with $f'(x) = y$ and $f'(z) = f(z)$ for $z \neq x$. We abbreviate x_1, \ldots, x_n with \underline{x} if n is clear from the context. Given a set M and a function f, we define $f^{-1}(M) := \{x : f(x) \in M\}$. We call a set M efficiently decidable if there is a deterministic polynomial-time algorithm deciding membership in M. We call M prefix-closed if $x \in M$ implies $x' \in M$ for all prefixes x' of x. A non-negative function f is negligible if for every c and sufficiently large n, $f(n) < n^{-c}$. f is overwhelming if $1 - f$ is negligible.

Definition 1 (Constructors, destructors, nonces, and messages types) A constructor C is a symbol with a (possibly zero) arity. A nonce N is a symbol with zero arity. We write $C/n \in C$ to denote that C contains a constructor C with arity n. A message type T over C and N is a set of terms over constructors C and nonces N. A destructor D of arity n, written D/n, over a message type T is a partial map $T^n \to T$. If D is undefined on \underline{t}, we write $D(\underline{t}) = \bot$.

In the following, we only consider sets of constructors C such that the same constructors cannot have different arities, i.e., $C/n, C/m \in C$ implies $n = m$. (This restriction simplifies notation and is without loss of generality, as one can simulate multi-arity constructors by adding the
We define a CoSP protocol as a tree with a distinguished root and with labels on both nodes and edges. Intuitively, the nodes correspond to different protocol actions: **Computation nodes** produce terms (using a constructor or destructor); **input and output nodes** correspond to receive and send operations; **nondeterministic nodes** encode nondeterministic choices in the protocol; **control nodes** allow an outside entity (i.e., an adversary) to influence the control flow of the protocol.

The edge labels intuitively allow for distinguishing branches in the protocol execution, e.g., destructor nodes have two outgoing edges labelled with *yes* and *no*, corresponding to the two

3Our main application of CoSP in this paper—specifically, the embedding of the applied π-calculus—does not make use of nondeterministic nodes; however, we feel that nondeterministic nodes can be very useful for other (future) applications.

arity to the name of the constructor.) We moreover assume that constructors have symbols that are bitstrings, and similarly for destructors and node identifiers in CoSP protocols as introduced below.

To unify notation, for a constructor, destructor, or nonce \(F/n \), we define the partial function \(\text{eval}_F : T^n \to T \) as follows: If \(F \) is a constructor or nonce, \(\text{eval}_F(t_1, \ldots, t_n) := F(t) \) if \(F \in T \) and \(\text{eval}_F(t) := ∅ \) otherwise. If \(F \) is a destructor, \(\text{eval}_F(t) := F(t) \) if \(F \neq ∅ \) and \(\text{eval}_F(t) := ∅ \) otherwise.

We now define which terms can be deduced from other terms; this is formalized using a deduction relation \(\vdash \) over a set of terms \(T \). The intuition of \(S \vdash m \) for \(S \subseteq T \) and \(m \in T \) is that the term \(m \) can be deduced from the terms in \(S \).

Definition 2 (Deduction relation) A deduction relation \(\vdash \) over a message type \(T \) is a relation between \(2^T \) and \(T \).

In most cases, the adversary can apply all constructors and destructors. This can be modelled by defining \(S \vdash t \Rightarrow S \vdash C(t) \) for every constructor \(C \) and \(S \vdash t \land D(t) \neq ∅ \Rightarrow S \vdash D(t) \) for every destructor \(D \), respectively. However, our model does not assume this in general, i.e., it supports private constructors as used by, e.g., ProVerif.

The constructors, destructors, and nonces, together with the message type and the deduction relation together form a symbolic model. Such a symbolic model describes a particular Dolev-Yao-style theory.

Definition 3 (Symbolic model) A symbolic model \(M = (C, N, T, D, \vdash) \) consists of a set of constructors \(C \), a set of nonces \(N \), a message type \(T \) over \(C \) and \(N \) with \(N \subseteq T \), a set of destructors \(D \) over \(T \), and a deduction relation \(\vdash \) over \(T \).

Predicates and how to model arbitrary (non-free) equational theories. A predicate \(P \) of arity \(n \) over a set of constructors \(C \) is a subset of \(T^n \). Predicates can be used to describe arbitrary tests that a protocol may perform. In particular, they can describe the equality test \(equals(x, y) \) which is the diagonal on \(T^2 \) for free equational theories and the equivalence relation between terms in non-free equational theories (i.e., \(equals(x, y) \) iff \(x = y \) in the equational theory). For instance, a non-free theory in which \(E(D(m)) = m \) holds can be modeled by constructors \(E \) and \(D \), and by letting \(equals(E(D(m)), m) \). (In this case, of course, all destructors should be compatible with \(equals \).) Furthermore, since each predicate \(P \) (including \(equals \)) can be realized using a destructor \(D_P \) by defining \(D_P(t_1, \ldots, t_n) := t_1 \) if \(P(t_1, \ldots, t_n) = true \) and \(D_P(t_1, \ldots, t_n) := ∅ \) otherwise, predicates do not require an explicit treatment. For an example on how to model non-free equational theories, see [Section 4](#).

2.2 Symbolic protocols

We define a CoSP protocol as a tree with a distinguished root and with labels on both nodes and edges. Intuitively, the nodes correspond to different protocol actions: **Computation nodes** produce terms (using a constructor or destructor); **input and output nodes** correspond to receive and send operations; **nondeterministic nodes** encode nondeterministic choices in the protocol; **control nodes** allow an outside entity (i.e., an adversary) to influence the control flow of the protocol.

The edge labels intuitively allow for distinguishing branches in the protocol execution, e.g., destructor nodes have two outgoing edges labelled with *yes* and *no*, corresponding to the two...
cases that the destructor is defined on the input term or not; hence we can, e.g., speak about the yes-successor of a destructor node.

Definition 4 (CoSP protocol) A CoSP protocol Π_s is a tree with a distinguished root and labels on both edges and nodes. Each node has a unique identifier N and one of the following types:

- **Computation nodes** are annotated with a constructor, nonce, or destructor F/n together with the identifiers of n (not necessarily distinct) nodes. Computation nodes have exactly two successors; the corresponding edges are labeled with yes and no, respectively.
- **Output nodes** are annotated with the identifier of one node. An output node has exactly one successor.
- **Input nodes** have no further annotation. An input node has exactly one successor.
- **Control nodes** are annotated with a bitstring l. A control node has at least one and up to countably many successors annotated with distinct bitstrings $l' \in \{0,1\}^\ast$. (We call l the out-metadata and l' the in-metadata.)
- **Nondeterministic nodes** have no further annotation. Nondeterministic nodes have at least one and at most finitely many successors; the corresponding edges are labeled with bitstrings.

We assume that the annotations are part of the node identifier N. If a node N contains an identifier N' in its annotation, then N' has to be on the path from the root to N (including the root, excluding N), and N' must be a computation node, or input node. In case N' is a computation node, the path from N' to N has to additionally go through the outgoing edge of N' with label yes.

Assigning each nondeterministic node a probability distribution over its successors yields the notion of a probabilistic CoSP protocol.

Definition 5 (Probabilistic CoSP protocol) A probabilistic CoSP protocol Π_p is a CoSP protocol, where each nondeterministic node is additionally annotated with a probability distribution on the labels of the outgoing edges.

In the following, we assume that such a probability distribution is encoded as a list of pairs, consisting of a label and a rational probability. Any probabilistic CoSP protocol Π_p can be transformed canonically into a CoSP protocol Π_s by erasing the probability distributions. We will call Π_s the symbolic protocol that corresponds to Π_p.

Probabilistic CoSP protocols will be crucial in the definition of computational soundness. Moreover, they often constitute an intermediate technical step within a larger proof. For instance, reasoning about implementations of CoSP protocols is difficult since they do not have a unique such implementation if nondeterministic nodes are present, in contrast to probabilistic CoSP protocols. With the notion of probabilistic CoSP protocols at hand, one can instead consider the set of all implementations of all probabilistic CoSP protocols whose corresponding CoSP protocol is Π_s.

Definition 6 (Efficient protocol) We call a probabilistic CoSP protocol efficient if:

- There is a polynomial p such that for any node N, the length of the identifier of N is bounded by $p(m)$ where m is the length (including the total length of the edge-labels) of the path from the root to N.
- There is a deterministic polynomial-time algorithm that, given the identifiers of all nodes and the edge labels on the path to a node N, computes the label of N.

We finally provide the notions of a symbolic execution of a CoSP protocol.
The symbolic execution of a CoSP protocol for a given symbolic model consists of a sequence of triples \((S, \nu, f)\) where \(S\) represents the knowledge of the adversary, \(\nu\) represents the current node identifier in the protocol, and \(f\) represents a partial function mapping already processed node identifiers to messages.

Definition 7 (Symbolic execution) Let a symbolic model \((C, N, T, D, \vdash)\) and a CoSP protocol \(\Pi_s\) be given. A full trace is a (finite) list of tuples \((S_i, \nu_i, f_i)\) such that the following conditions hold:

- **Correct start:** \(S_1 = \emptyset, \nu_1\) is the root of \(\Pi_s\), \(f_1\) is a totally undefined partial function mapping node identifiers to terms.
- **Valid transition:** For every two consecutive tuples \((S, \nu, f)\) and \((S', \nu', f')\) in the list, let \(\bar{\nu}\) be the node identifiers in the annotation of \(\nu\) and define \(\bar{j} := f(\bar{\nu})\). We have:
 - If \(\nu\) is a computation node with constructor, destructor or nonce \(F\), then \(S' = S\). If \(m := \text{eval}_F(\bar{j}) \neq \bot\), \(\nu'\) is the yes-successor of \(\nu\) in \(\Pi_s\), and \(f' = f(\nu := m)\). If \(m = \bot\), then \(\nu'\) is the no-successor of \(\nu\) and \(f' = f\).
 - If \(\nu\) is an input node, then \(S' = S\) and \(\nu'\) is the successor of \(\nu\) in \(\Pi_s\) and there exists an \(m\) with \(S \vdash m\) and \(f' = f(\nu := m)\).
 - If \(\nu\) is an output node, then \(S' = S \cup \{\bar{j}\}\), \(\nu'\) is the successor of \(\nu\) in \(\Pi_s\) and \(f' = f\).
 - If \(\nu\) is a control or a nondeterministic node, then \(\nu'\) is a successor of \(\nu\) and \(f' = f\) and \(S' = S\).

A list of node identifiers \(\nu_i\) is a node trace if there is a full trace with these node identifiers.

Example. For the sake of exposition, we illustrate how to phrase a cryptographic protocol as a CoSP protocol, i.e., according to Definition 4. Consider the first step of the Needham-Schroeder public-key protocol:

\[A \rightarrow B : E_{ek_B}(N_A, ek_A). \]

In this step, \(A\) sends the encryption \(E_{ek_B}(N_A, ek_A)\) of a fresh nonce \(N_A\) and \(A\)’s encryption key \(ek_A\) under \(B\)’s encryption key \(ek_B\) to \(B\). We assume that \(ek_A\) has been generated by \(A\) himself, and \(ek_B\) has been provided by the adversary. Figure 1 shows how to model this protocol step as a CoSP protocol. Solid lines represent the edges in the protocol tree, and dashed lines refer to the nodes that are used to compute and output nodes as arguments. In a node with two outgoing edges, the left edge is the yes-edge, and the right one the no-edge. E.g., the \(E\)-computation node is executed if the \(N_R\)-computation node succeeds and produces a term \(E(a, b, c)\) where \(a, b, c\) are the terms constructed by the input, the pair-computation, and the \(N_R\)-computation node. We assume that, if a constructor application fails, the protocol is stuck, this is modeled by a subtree \(\infty\) which consists of an infinite sequence of nondeterministic nodes. The overall effect of this tree is to compute \(E(ek_B, pair(N_A, ek_A), N_R)\) with \(ek_A := ek(N_K)\) when receiving \(ek_B\) from the adversary.

A full-fledged modeling of the Needham-Schroeder protocol would also contain a description of the party \(B\). In this case, the adversary might use control nodes to indicate which party to schedule at which point, each possible schedule would correspond to a path in the tree. One should keep in mind, however, that such trees are not intended to be produced by hand, instead, they are an intermediate representation needed to encode other calculi.

2.3 Computational model

We now define the computation implementation of a symbolic model as a family of functions that provide computation interpretations to constructors, destructors, and nonces.
Figure 1: Symbolic protocol representing the first step of the Needham-Schroeder protocol.

Definition 8 (Computational implementation) Let a symbolic model $M = (C, N, T, D, \vdash)$ be given. A computational implementation of M is a family of functions $A = (A_F)_{F \in C \cup D \cup N}$ such that A_F for $F/n \in C \cup D$ is a partial deterministic function $N \times \{0, 1\}^* \rightarrow \{0, 1\}^*$, and A_N for $N \in N$ is a total probabilistic function with domain N and range $\{0, 1\}^*$ (i.e., it specifies a probability distribution on bitstrings that depends on its argument). The first argument of A_F and A_N represents the security parameter.

All functions A_F have to be computable in deterministic polynomial-time, and A_N has to be computable in probabilistic polynomial-time.\[4\]

Requiring A_C and A_D to be deterministic is without loss of generality, since one can always add an explicit randomness argument that takes a nonce as input.

The computational execution of a probabilistic CoSP protocol defines an overall probability distribution on all possible node traces that the protocol proceeds through. In contrast to symbolic executions, we do not aim at defining the notion of a full trace: the adversary’s symbolic execution.

\[4\]More precisely, there has to exist a single uniform probabilistic polynomial-time algorithm A that, given the name of $C \in C$, $D \in D$, or $N \in N$, together with an integer k and the inputs m, computes the output of A_C, A_D, and A_N or determines that the output is undefined. This algorithm must run in polynomial-time in $k + |m|$ and may not use random coins when computing A_C and A_D.\[9\]
knowledge S has no formal counterpart in the computational setting, and the function f occurring in the computational executions will not be needed in our later results.

Note on the computational interpretation of symbols. Here and in the following, we will assume a canonical bitstring representation of symbols. We do not require that the bitstring representation of a term, say, $E(m)$ hides (the bitstring representation of) m. (A suitable secrecy property will be ensured by an additional Dolev-Yao-like requirement on the computational machine that receives and sends bitstring representations of terms.) The purpose of the bitstring presentation is only to be syntactically able to consider a CoSP protocol in a computational setting.

Definition 9 (Computational execution) Let a symbolic model $M = (C, N, T, D, \vdash)$, a computational implementation A of M, and a probabilistic CoSP protocol Π_p be given. Let a probabilistic polynomial-time interactive machine E (the adversary) be given (polynomial-time in the sense that the number of steps in all activations are bounded in the length of the first input of E), and let p be a polynomial. We define a probability distribution $\mathrm{Nodes}^p_{M,A,\Pi_p,E}(k)$, the computational node trace, on (finite) lists of node identifiers (ν_i) according to the following probabilistic algorithm (both the algorithm and E are run on input k):

- Initial state: $\nu_1 := \nu$ is the root of Π_p. Let f be an initially empty partial function from node identifiers to bitstrings, and let n be an initially empty partial function from N to bitstrings.
- For $i = 1, 2, \ldots$ do the following:
 - Let $\tilde{\nu}$ be the node identifiers in the label of ν. $\tilde{n}_i := f(\tilde{\nu}_i)$.
 - Proceed depending on the type of node ν:
 * If ν is a computation node with nonce $N \in N$: Let $m' := n(N)$ if $n(N) \neq \bot$ and sample m' according to $A_N(k)$ otherwise. Let ν' be the yes-successor of ν, $f' := f(\nu := m')$, and $\nu := (N := m')$. Let $\nu := \nu'$, $f := f'$ and $n := n'$.
 * If ν is a computation node with constructor or destructor F, then $m' := A_F(k, \tilde{n})$. If $m' \neq \bot$, then ν' is the yes-successor of ν, if $m' = \bot$, then ν' is the no-successor of ν. Let $f' := f(\nu := m')$. Let $\nu := \nu'$ and $f := f'$.
 * If ν is an input node, ask for a bitstring m from E. Abort the loop if E halts. Let ν' be the successor of ν. Let $f := f(\nu := m)$ and $\nu := \nu'$.
 * If ν is an output node, send \tilde{n}_1 to E. Abort the loop if E halts. Let ν' be the successor of ν. Let $\nu := \nu'$.
 * If ν is a control node, labeled with out-metadata l, send l to E. Abort the loop if E halts. Upon receiving an answer l', let ν' be the successor of ν along the edge labeled l' (or the lexicographically smallest edge if there is no edge with label l'). Let $\nu := \nu'$.
 * If ν is a nondeterministic node, let D be the probability distribution on the label of ν. Pick ν' according to the distribution D, and let $\nu := \nu'$.
 - Let $\nu_i := \nu$.
 - Let len be the number of nodes from the root to ν plus the total length of all bitstrings in the range of f. If $\text{len} > p(k)$, stop.

2.4 Computational Soundness

We first define trace properties and their fulfillment by a (probabilistic) CoSP protocol. After that, we provide the definition of computational soundness for trace properties.

Definition 10 (Trace property) A trace property \mathcal{P} is an efficiently decidable and prefix-closed set of (finite) lists of node identifiers.
Let $\mathbf{M} = (C, N, T, D, \vdash)$ be a symbolic model and Π_s a CoSP protocol. Then Π_s symbolically satisfies a trace property P in \mathbf{M} iff every node trace of Π_s is contained in P. Let A be a computational implementation of \mathbf{M} and let Π_p be a probabilistic CoSP protocol. Then (Π_p, A) computationally satisfies a trace property P in \mathbf{M} iff for all probabilistic polynomial-time interactive machines E and all polynomials p, the probability is overwhelming that $\text{Nodes}^{p}_{\mathbf{M}, A, \Pi_p, E}(k) \in P$.

Definition 11 (Computational soundness) A computational implementation A of a symbolic model $\mathbf{M} = (C, N, T, D, \vdash)$ is computationally sound for a class P of CoSP protocols iff for every trace property P and for every efficient probabilistic CoSP protocol Π_p, we have that (Π_p, A) computationally satisfies P whenever the corresponding CoSP protocol Π_s of Π_p symbolically satisfies P and $\Pi_s \in P$.

A computational soundness result with respect to a non-trivial message type T (a message type that does not contain all terms) may be useful when embedding a calculus in our model that supports typed messages (e.g., most modern programming languages). Many calculi, however, do not support typed messages. In this case, it may be impossible to directly represent the message type in the calculus. An example is the applied π-calculus presented in Section 4. To handle such calculi, the following lemma can be used. Intuitively, it states that if the protocol is guaranteed not to try to construct non-well-typed terms (terms not in T), one can remove the restriction to well-typed terms from the model, i.e., one can set T to be the set of all terms.

Lemma 1 (Removing the message type) Let $\mathbf{M} = (C, N, T, D, \vdash)$ be a symbolic model, P a class of CoSP protocols. We call a CoSP protocol Π_s T-conform if in any symbolic execution of Π_s, no no-successor of a computation node annotated with a constructor is reached. Let T' be the set of all terms over $C \cup N$ (the trivial message type), let \vdash' be a relation on $T^2 \times T$ with $\vdash' \supseteq \vdash$, let $\mathbf{M}' = (C, N, T', D, \vdash')$, and let $P' := \{\Pi_s \in P : \Pi_s$ is T-conform}. Assume that A is a computationally sound implementation of \mathbf{M} for protocols in P. Then A is a computationally sound implementation of \mathbf{M}' for protocols in P'.

Proof. Fix a trace property P and an efficient probabilistic CoSP protocol Π_p with $\Pi_s \in P' \subseteq P$. Assume that (Π_p, A) does not computationally satisfy P. Since A is a computationally sound implementation of \mathbf{M}, we have that Π_s does not symbolically satisfy P with respect to the model \mathbf{M}. Hence there is a node trace $\nu \notin P$ of Π_s with respect to \mathbf{M}. By assumption, in the symbolic execution leading to ν, no no-successor of a computation node annotated with a constructor is ever reached. Since $N \subseteq T$, no no-successor of a computation node annotated with a nonce is ever reached.

Thus, ν is also a symbolic trace with respect to the symbolic model (C, N, T', D, \vdash'). Since \vdash' is finer than \vdash, ν is also a symbolic trace with respect to $\mathbf{M}' = (C, N, T', D, \vdash')$. Thus Π_s does not symbolically satisfy P with respect to the symbolic model \mathbf{M}'. \qed

2.5 A Sufficient Criterion for Soundness

To tame the complexity of computational soundness proofs, we introduce a technical tool to show soundness. We introduce the notion of a simulator and identify several properties such that the existence of a simulator with all of these properties already entails computational soundness in the sense of Definition 11. This notion might remind of the simulation-based proofs of computational soundness [BPW03a, BP04, BP05, CH06], but it does not depend on framework-specific details such as scheduling, message delivery, etc. We stress that, in CoSP, asserting computational soundness proofs need not be done using this simulator-based characterization to enjoy CoSP’s benefits, but every other prevalently used technique for showing computational soundness can be used as well.
In the following, we fix a symbolic model $M = (C, N, T, D, ⊢)$ and a computational implementation A of M. In the following, we moreover assume that whenever a machine sends a term or a node, the term/node is suitably encoded as bitstring.

We proceed by introducing the notion of a simulator, essentially by imposing syntactic constraints on the set of all interactive machines.

Definition 12 (Simulator) A simulator is an interactive machine Sim that satisfies the following syntactic requirements:

- When activated without input, it replies with a term $m \in T$. (This corresponds to the situation that the protocol expects some message from the adversary.)
- When activated with some $t \in T$, it replies with an empty output. (This corresponds to the situation that the protocol sends a message to the adversary.)
- When activated with $(info, ν, t)$ where $ν$ is a node identifier and $t \in T$, it replies with (proceed).
- At any point (in particular instead of sending a reply), it may terminate.

A simulator Sim is intuitively expected to translate a computational attack into a corresponding symbolic attack. Sim operates in a symbolic setting, but will usually simulate internally a computational adversary. Thus Sim essentially translates bitstrings to terms, and vice versa.

We proceed by defining the hybrid execution of a probabilistic CoSP protocol. We call this execution hybrid because it is a mixture of the symbolic and the computational execution. Concretely, we define a hybrid protocol machine $Π^C$ that is associated to $Π_p$ and interfaces Sim with a probabilistic CoSP protocol $Π_p$.

Definition 13 (Hybrid execution) Let $Π_p$ be a probabilistic CoSP protocol, and let Sim be a simulator. We define a probability distribution $H \cdot Trace_{M, Π_p, Sim}(k)$ on (finite) lists of tuples $(S, ν, f)$ called the full hybrid trace according to the following probabilistic algorithm $Π^C$, run on input k, that interacts with Sim. ($Π^C$ is called the hybrid protocol machine associated with $Π_p$ and internally runs a symbolic simulation of $Π_p$ as follows):

- **Start:** $S_1 := S := ∅$, $ν_1 := ν$ is the root of $Π_p$, and $f_1 := f$ is a totally undefined partial function mapping node identifiers to T. Run $Π_p$ on $ν$.
- **Transition:** For $i = 2, \ldots$ do the following:
 - Let $ν$ be the node identifiers in the label of $ν$. Define i_1 through $i_j := f(ν_j)$.
 - Proceed depending on the type of $ν$:
 - If $ν$ is a computation node with constructor, destructor, or nonce F, then let $m := F(i)$. If $m \neq ⊥$, let $ν′$ be the yes-successor of $ν$ and let $f′ := f(ν := m)$. If $m = ⊥$, let $ν′$ be the no-successor of $ν$ and let $f′ := f$.
 - If $ν$ is an output node, send i_1 to Sim (but without handing over control to Sim). Let $ν′$ be the unique successor of $ν$. Set $ν := ν′$.
 - If $ν$ is an input node, hand control to Sim, and wait to receive $m \in T$ from Sim. Let $f′ := f(ν := m)$, and let $ν′$ be the unique successor of $ν$. Set $f := f′$ and $ν := ν′$.
 - If $ν$ is a control node labeled with out-metadata l, send l to Sim, hand control to Sim, and wait to receive a bitstring $l′$ from Sim. Let $ν′$ be the successor of $ν$ along the edge labeled $l′$ (or the lexicographically smallest edge if there is no edge with label $l′$). Let $ν := ν′$.
 - If $ν$ is a nondeterministic node, sample $ν′$ according to the probability distribution specified in $ν$. Let $ν := ν′$.

 - Send $(info, ν, t)$ to Sim. When receiving an answer (proceed) from Sim, continue.
 - If Sim has terminated, stop. Otherwise let $(S_i, ν_i, f_i) := (S, ν, f)$.

12
The probability distribution of the (finite) list \(v_1, \ldots\) produced by this algorithm we denote \(H\text{-}Nodes_{M,\Pi_p,Sim}(k)\). We call this distribution the hybrid node trace.

We write \(Sim + \Pi^C\) to denote the execution of \(Sim\) and \(\Pi^C\).

We proceed by defining properties of a simulator, such as adhering to a Dolev-Yao style deduction relation. Later we will show that simulators that satisfy these properties entail computational soundness results. Treating these properties separately instead of immediately conjoining them into a general soundness criterion allows us to more carefully identify where these individual properties are exploited in computational soundness proofs.

The first property – Dolev-Yao-style – captures that \(Sim\) adheres to the deduction relation \(\vdash\) in Definition 7 for input/output nodes. More precisely, the terms that \(Sim\) sends to the CoSP protocol have to be derivable from \(Sim\)'s symbolic view so far.

Definition 14 (Dolev-Yao style simulator) A simulator \(Sim\) is Dolev-Yao style (short: DY) for \(M\) and \(\Pi_p\), if with overwhelming probability the following holds:

In an execution of \(Sim + \Pi^C\) for each \(\ell\), let \(m_\ell \in T\) be the \(\ell\)-th term sent (during processing of one of \(\Pi^C\)’s input nodes) from \(Sim\) to \(\Pi^C\) in that execution. Let \(T_\ell \subseteq T\) the set of all terms that \(Sim\) has received from \(\Pi^C\) (during processing of output nodes) prior to sending \(m_\ell\). Then we have \(T_\ell \vdash m_\ell\).

The second property – indistinguishability – captures that the hybrid node traces are computationally indistinguishable from real node traces, i.e., the corresponding random variables cannot be distinguished by any probabilistic algorithm that runs in polynomial time in the security parameter. We write \(\approx\) to denote computational indistinguishability.

Definition 15 (Indistinguishable simulator) A simulator \(Sim\) is indistinguishable for \(M\), \(\Pi_p\), an implementation \(A\), an adversary \(E\), and a polynomial \(p\), if

\[
\text{Nodes}^{p}_{M,A,\Pi_p,E}(k) \approx H\text{-}Nodes_{M,\Pi_p,Sim}(k),
\]

i.e., if the computational node trace and the hybrid node trace are computationally indistinguishable.

We define the following abbreviation.

Definition 16 (Good simulator) A simulator is good for \(M\), \(\Pi_p\), \(A\), \(E\), and \(p\) if it is Dolev-Yao style for \(M\), and \(\Pi_p\), and indistinguishable for \(M\), \(\Pi_p\), \(A\), \(E\), and \(p\).

We can now formally state and prove the main result of this section: the existence of a good simulator implies computational soundness.

Theorem 1 (Good simulator implies soundness) Let \(M = (C, N, T, D, \vdash)\) be a symbolic model, let \(P\) be a class of CoSP protocols, and let \(A\) be a computational implementation of \(M\). Assume that for every efficient probabilistic CoSP protocol \(\Pi_p\) (whose corresponding CoSP protocol is in \(P\)), every probabilistic polynomial-time adversary \(E\), and every polynomial \(p\), there exists a good simulator for \(M\), \(\Pi_p\), \(A\), \(E\), and \(p\). Then \(A\) is computationally sound for protocols in \(P\).

Proof. We have to show that for every probabilistic CoSP protocol \(\Pi_p\), we have that \((\Pi_p, A)\) computationally satisfies \(\mathcal{P}\) whenever \(\Pi_p\) symbolically satisfies a property \(\mathcal{P}\) (where \(\Pi_p\) is the corresponding CoSP protocol of \(\Pi_p\)). Thus, for every \(E\) and \(p\), \(\text{Nodes}^{p}_{M,A,\Pi_p,E}(k)\) has to be contained in \(\mathcal{P}\) with overwhelming probability. Fix \(\Pi_p\), \(E\), and \(p\), and let \(Sim\) be a good simulator for \(M\), \(\Pi_p\), \(A\), \(E\), and \(p\). Let \(\mathcal{A}\mathcal{P}\) denote a polynomial-time algorithm that decides property \(\mathcal{P}\).

We first show a lemma on the hybrid node traces and then proceed with the overall proof.
Lemma 2 Consider a hybrid execution of Sim + Π^C in which Sim is DY, i.e., we have \(\{t_1, \ldots, t_\ell\} \vdash m_\ell \) for all \(t_\ell \) and \(m_\ell \) as in Definition 14 and all \(t \).

Let \(\text{tr} \) be the full hybrid trace of that execution. Then \(\text{tr} \) is a full symbolic trace of \(\Pi_s \).

Proof. (of Lemma 2) We show that \(\text{tr} \) fulfills the conditions on full traces of Definition 7. This is clear for constructor, destructor, and control nodes, since the processing of these nodes in the hybrid setting of Definition 13 matches the one in the symbolic setting of Definition 7.

Input/output nodes in \(\text{tr} \) consist of a term \(t \in T \) sent from \(\Pi^C \) to Sim, or a term \(t' \) sent from Sim to \(\Pi^C \). By the DY property of Sim, we know that \(S \vdash t' \), where \(S \) denotes all terms (including \(t \)) sent from \(\Pi^C \) to Sim so far. Hence, the node satisfies the requirement for input/output nodes from Definition 7. This completes the proof of the lemma.

Lemma 2 immediately entails that the probability is overwhelming that \(H_{-\text{Nodes}}_{M,\Pi_s,\text{Sim}}(k) \) is a symbolic node trace of \(\Pi_s \), and hence that \(H_{-\text{Nodes}}_{M,\Pi_s,\text{Sim}} \in \mathcal{P} \). Since \(A_P \) decides \(\mathcal{P} \), this means that

\[
\Pr \left[A_P(H_{-\text{Nodes}}_{M,\Pi_s,\text{Sim}}(k)) = 1 \right] \text{ is overwhelming. (1)}
\]

By Sim’s indistinguishability property, we know that

\[
\text{Nodes}^P_{M,A,\Pi_s,E}(k) \lessdot H_{-\text{Nodes}}_{M,\Pi_s,\text{Sim}}(k).
\]

Since \(A_P \) is polynomial-time in its input, and \(\text{Nodes}^P_{M,A,\Pi_s,E}(k) \) is polynomially-sized in \(k \) by construction, this implies that

\[
\Pr \left[A_P(\text{Nodes}^P_{M,A,\Pi_s,E}(k)) = 1 \right] \text{ is overwhelming.}
\]

and hence that \(\text{Nodes}^P_{M,A,\Pi_s,E}(k) \in \mathcal{P} \) with overwhelming probability. This concludes the proof of Theorem 1.

3 Case study: computational soundness of public-key encryption and signatures

In this section, we provide a symbolic model that allows for expressing encryption, signatures, and pairs, and we derive criteria under which a computational implementation of that model is computationally sound.

The symbolic model. We first specify the symbolic model \(M = (C, N, T, D, \vdash) \):

- Constructors and nonces: Let \(C := \{E/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string_0/1, string_1/1, empty/0, garbageSig/2, garbage/1, garbageE/2\} \) and \(N := N_P \cup N_E \). Here \(N_P \) and \(N_E \) are countably infinite sets representing protocol and adversary nonces, respectively. Intuitively, encryption, decryption, verification, and signing keys are represented as \(ek(r), dk(r), sig(r), sk(r) \) with a nonce \(r \) (the randomness used when generating the keys).

\(E(ek(r'), m, r) \) encrypts \(m \) using the encryption key \(ek(r') \) and randomness \(r \). \(sig(sk(r'), m, r) \) is a signature of \(m \) using the signing key \(sk(r') \) and randomness \(r \). The constructors \(string_0, string_1, \) and \(empty \) are used to model arbitrary strings used as payload in a protocol (e.g., a bitstring 010 would be encoded as \(string_0(string_1(string_0(\text{empty}))) \)). \(garbage, garbageE, \) and \(garbageSig \) are constructors necessary to express certain invalid terms the adversary may send, these constructors are not used by the protocol.
The computational implementation. Obtaining a computational soundness result for the symbolic model M requires its implementation to use an IND-CCA2 secure encryption scheme and a strongly existentially unforgeable signature scheme. More precisely, we require that (A_{ek}, A_{dk}),
\[m \in S \quad N \in \mathbb{N}_E \quad S \vdash m \quad S \vdash N \quad S \vdash t \quad t \in T \quad F \in C \cup D \quad \text{eval}_F(t) \neq \perp \]

Figure 2: Deduction rules for the symbolic model of the applied \(\pi \)-calculus

\(A_E \) and \(A_D \) form the key generation, encryption and decryption algorithm of an IND-CCA2-secure scheme; and that \((A_{ek}, A_{sk}), (A_{sig}, A_{isig}), \) and \(A_{verify} \) form the key generation, signing, and verification algorithm of a strongly existentially unforgeable signature scheme. Let \(A_{isenc}(m) = m \) if \(m \) is a ciphertext. (Only a syntactic check is performed; it is not necessary to check whether \(m \) was correctly generated.) \(A_{issig}, A_{isek}, \) and \(A_{isok} \) are defined analogously. \(A_{ekof} \) extracts the encryption key from a ciphertext, i.e., we assume that ciphertexts are tagged with their encryption key and the signed message. Nonces are implemented as (suitably tagged) random \(k \)-bit strings. \(A_{pair}, A_{fst}, \) and \(A_{snd} \) construct and destruct pairs. We require that the implementation of the constructors are length regular, i.e., the length of the result of applying a constructor depends only on the lengths of the arguments. No restrictions are put on \(A_{garbageE} \) and \(A_{garbageSig} \); as these are never actually used by the protocol. (The implementation of these functions need not even fulfill equations like \(A_{isenc}(A_{garbageE}(x)) = A_{garbageE}(x) \).)

The exact requirements are as follows:

Implementation conditions. We require that the implementation \(A \) of the symbolic model \(M \) has the following properties:

1. \(A \) is an implementation of \(M \) in the sense of [Definition S](#) (in particular, all functions \(A_f \) \((f \in C \cup D)\) are polynomial-time computable).
2. There are disjoint and efficiently recognizable sets of bitstrings representing the types nonce, ciphertexts, encryption keys, decryption keys, signatures, verification keys, signing keys, pairs, and payload-strings. The set of all bitstrings of type nonce we denote \(\text{Nonces}_k \). (Here and in the following, \(k \) denotes the security parameter.)
3. The functions \(A_E, A_{ek}, A_{dk}, A_{sig}, A_{sk}, A_{pair}, A_{string_1}, A_{string_2} \), and \(A_{string_3} \) are length-regular. We call an \(n \)-ary function \(f \) length regular if \(|m_i| = |m'_i| \) for \(i = 1, \ldots, n \) implies \(|f(m)| = |f(m')| \). All \(m \in \text{Nonces}_k \) have the same length.
4. \(A_N \) for \(N \in \mathbb{N} \) returns a uniformly random \(r \in \text{Nonces}_k \).
5. Every image of \(A_E \) is of type ciphertext, every image of \(A_{ek} \) and \(A_{ekof} \) is of type encryption key, every image of \(A_{dk} \) is of type decryption key, every image of \(A_{sig} \) is of type signature, every image of \(A_{sk} \) and \(A_{ekof} \) is of type verification key, every image of \(A_{empty}, A_{string_1}, \) and \(A_{string_3} \) is of type payload-string.
6. For all \(m_1, m_2 \in \{0,1\}^* \) we have \(A_{fst}(A_{pair}(m_1, m_2)) = m_1 \) and \(A_{snd}(A_{pair}(m_1, m_2)) = m_2 \). Every \(m \) of type pair is in the range of \(A_{pair} \). If \(m \) is not of type pair, \(A_{fst}(m) = A_{snd}(m) = \perp \).
7. For all \(m \) of type payload-string we have that \(A_{unstring_1}(A_{string_1}(m)) = m \) and \(A_{unstring_2}(A_{string_2}(m)) = m \) for \(i, j \in \{0,1\}, i \neq j \). For \(m = \text{empty} \) or \(m \) not of type payload-string, \(A_{unstring_1}(m) = A_{unstring_2}(m) = \perp \). Every \(m \) of type payload-string is of the form \(m = A_{unstring_3}(m') \) or \(m = A_{unstring_4}(m') \) or \(m = \text{empty} \) for some \(m' \) of type payload-string.
8. \(A_{ekof}(A_E(p, x, y)) = p \) for all \(p \) of type encryption key, \(x \in \{0,1\}^* \), \(y \in \text{Nonces}_k \). \(A_{ekof}(e) \neq \perp \) for any \(e \) of type ciphertext and \(A_{ekof}(e) = \perp \) for any \(e \) that is not of type ciphertext.
9. \(A_{ekof}(A_{sig}(A_{sk}(x, y, z)) = A_{sk}(x) \) for all \(y \in \{0,1\}^* \), \(x, z \in \text{Nonces}_k \). \(A_{ekof}(e) \neq \perp \) for any \(e \) of type signature and \(A_{ekof}(e) = \perp \) for any \(e \) that is not of type signature.

\footnote{This would typically be the set of all \(k \)-bit strings with a tag denoting nonces.}
10. $A_E(p, m, y) = \bot$ if p is not of type encryption key.
11. $A_D(A_{sk}(r), m) = \bot$ if $r \in \text{Nonces}_k$ and $A_{ekof}(m) \neq A_{ek}(r)$. (This implies that the encryption key is uniquely determined by the decryption key.)
12. $A_D(A_{sk}(r), A_E(A_{sk}(r), m, r')) = m$ for all $r, r' \in \text{Nonces}_k$.
13. $A_{verify}(A_{sk}(r), A_{sig}(A_{sk}(r), m, r')) = m$ for all $r, r' \in \text{Nonces}_k$.
14. For all $p, s \in \{0, 1\}^*$ we have that $A_{verify}(p, s) \neq \bot$ implies $A_{ekof}(s) = p$.
15. $A_{isenc}(x) = x$ for any x of type encryption key. $A_{isenc}(x) = \bot$ for any x not of type encryption key.
16. $A_{issig}(x) = x$ for any x of type verification key. $A_{issig}(x) = \bot$ for any x not of type verification key.
17. $A_{iscenc}(x) = x$ for any x of type ciphertext. $A_{iscenc}(x) = \bot$ for any x not of type ciphertext.
18. $A_{issig}(x) = x$ for any x of type signature. $A_{issig}(x) = \bot$ for any x not of type signature.
19. We define an encryption scheme $(\text{KeyGen}, \text{Enc}, \text{Dec})$ as follows: KeyGen picks a random $r \leftarrow \text{Nonces}_k$ and returns $(A_{sk}(r), A_{dk}(r))$. $\text{Enc}(p, m)$ picks a random $r \leftarrow \text{Nonces}_k$ and returns $A_E(p, m, r)$. $\text{Dec}(k, c)$ returns $A_D(k, c)$. We require that then $(\text{KeyGen}, \text{Enc}, \text{Dec})$ is IND-CCA secure.
20. We define a signature scheme $(\text{SKeyGen}, \text{Sig}, \text{Verify})$ as follows: SKeyGen picks a random $r \leftarrow \text{Nonces}_k$ and returns $(A_{sk}(r), A_{dk}(r))$. $\text{Sig}(p, m)$ picks a random $r \leftarrow \text{Nonces}_k$ and returns $A_{sig}(p, m, r)$. $\text{Verify}(p, s, m)$ returns 1 iff $A_{verify}(p, s) = m$. We require that then $(\text{SKeyGen}, \text{Sig}, \text{Verify})$ is strongly existentially unforgeable.
21. For all e of type encryption key and all $m \in \{0, 1\}^*$, the probability that $A_E(e, m, r) = A_E(e, m, r')$ for uniformly chosen $r, r' \in \text{Nonces}_k$ is negligible.
22. For all $r_s \in \text{Nonces}_k$ and all $m \in \{0, 1\}^*$, the probability that $A_{sig}(A_{sk}(r_s), m, r) = A_{sig}(A_{sk}(r_s), m, r')$ for uniformly chosen $r, r' \in \text{Nonces}_k$ is negligible.

Note that any IND-CCA secure encryption scheme and strongly existentially unforgeable signature scheme can be transformed into an implementation satisfying the above conditions by suitably tagging and padding the ciphertexts, signatures, and keys.

Key-safe protocols. The computational soundness result we derive in this section requires that the CoSP protocol satisfies certain constraints. In a nutshell, these constraints require that encryption, signing, and key generation always use fresh randomness, that decryption only uses honestly generated (i.e., through key generation) decryption keys, that only honestly generated keys are used for signing, and that the protocol does not produce garbage terms. Decryption and signing keys may not be sent around. (In particular, this avoids the so-called key-cycle and key-commitment problems.) We call protocols satisfying these conditions key-safe. We stress that key-safe protocols are not a requirement induced by our framework as such. In fact, requirements similar to key-safeness are standard and state-of-the-art assumptions for soundness results (either explicit or implicitly enforced by the modeling, see, e.g., [AR02, MW03, BPW03]).

The exact requirements are the following:

Protocol conditions. A CoSP protocol is key-safe if it satisfies the following conditions:
1. The argument of every ek-, dk-, vk-, and sk-computation node and the third argument of every E- and sig-computation node is an N-computation node with $N \in \mathbb{N}_p$. (Here and in the following, we call the nodes referenced by a protocol node its arguments.) We call these N-computation nodes randomness nodes.
2. Every computation node that is the argument of an ek-computation node or of a dk-computation node on some path p occurs only as argument to ek- and dk-computation nodes on that path p.

17
3. Every computation node that is the argument of a vk-computation node or of an sk-computation node on some path p occurs only as argument to vk- and sk-computation nodes on that path p.

4. Every computation node that is the third argument of an E-computation node or of a sig-computation node on some path p occurs exactly once as an argument in that path p.

5. Every dk-computation node occurs only as the first argument of a D-destructor node.

6. The first argument of a D-destructor node is a dk-computation node.

7. Every sk-computation node occurs only as the first argument of a sig-computation node.

8. The first argument of a sig-computation node is an sk-computation node.

9. There are no computation nodes with the constructors $garbage$, $garbageE$, $garbageSig$, or $N \in \mathbb{N}_E$.

Construction of the simulator. In the following, we define distinct nonces $N^m \in \mathbb{N}_E$ for each $m \in \{0, 1\}^*$. In a hybrid execution, we call a term t **honestly generated** if it occurs as a subterm of a term sent by the protocol Π^C to the simulator before it has occurred as a subterm of a term sent by the simulator to the protocol Π^C.

For an adversary E and a polynomial p, we construct the simulator Sim as follows: In the first activation, it chooses $r_N \in \text{Nonces}_E$ for every $N \in \mathbb{N}_p$. It maintains an integer len, initially 0. At any point in the execution, \mathcal{N} denotes the set of all nonces $N \in \mathbb{N}_p$ that occurred in terms received from Π^C. \mathcal{R} denotes the set of randomness nonces (i.e., the nonces associated with all randomness nodes of Π^C passed through up to that point).

Sim internally simulates the adversary E. When receiving a term $\tilde{t} \in \mathcal{T}$ from Π^C, it passes $\beta(\tilde{t})$ to E where the partial function $\beta : \mathcal{T} \rightarrow \{0, 1\}^*$ is defined below. When E answers with $m \in \{0, 1\}^*$, the simulator sends $\tau(m)$ to Π^C where the function $\tau : \{0, 1\}^* \rightarrow \mathcal{T}$ is defined below. The bitstrings sent from the protocol at control nodes are passed through to E and vice versa. When the simulator receives $(info, \nu, t)$, the simulator increases len by $\ell(t) + 1$ where $\ell : \mathcal{T} \rightarrow \{0, 1\}^*$ is defined below. If $\text{len} > p(k)$, the simulator terminates, otherwise it answers with (proceed).

Translation functions. The partial function $\beta : \mathcal{T} \rightarrow \{0, 1\}^*$ is defined as follows (where the first matching rule is taken):

- $\beta(N) := r_N$ if $N \in \mathcal{N}$.
- $\beta(N^m) := m$.
- $\beta(E(ek(t_1), t_2, M)) := A_E(\beta(ek(t_1)), \beta(t_2), r_M)$ if $M \in \mathcal{N}$.
- $\beta(E(ek(M), t, N^m)) := m$ if $M \in \mathcal{N}$.
- $\beta(ek(N)) := A_{ek}(r_N)$ if $N \in \mathcal{N}$.
- $\beta(ek(N^m)) := m$.
- $\beta(dk(N)) := A_{dk}(r_N)$ if $N \in \mathcal{N}$.
- $\beta(sig(sk(N), t, M)) := A_{sig}(A_{sk}(r_N), \beta(t), r_M)$ if $N, M \in \mathcal{N}$.
- $\beta(sig(sk(M), t, N^s)) := s$.
- $\beta(vk(N)) := A_{vk}(r_N)$ if $N \in \mathcal{N}$.
- $\beta(vk(N^m)) := m$.
- $\beta(sk(N)) := A_{sk}(r_N)$ if $N \in \mathcal{N}$.
- $\beta(pair(t_1, t_2)) := A_{pair}(\beta(t_1), \beta(t_2))$.
- $\beta(string_0(t)) := A_{string_0}(\beta(t))$.
- $\beta(string_1(t)) := A_{string_1}(\beta(t))$.
- $\beta(empty) := A_{empty}$.
- $\beta(garbage(N^c)) := c$.

18
\(\beta(garbageE(t, N^\tau)) := c. \)
\(\beta(garbageSig(t_1, t_2, N^s)) := s. \)
\(\beta(t) := \bot \) in all other cases.

The total function \(\tau : \{0,1\}^* \rightarrow T \) is defined as follows (where the first matching rule is taken):
\[\tau(r) := \begin{cases} N & \text{if } r = r_N \text{ for some } N \in \mathcal{N} \setminus \mathcal{R}. \\ N^\tau & \text{if } r \text{ is of type nonce.} \\ E(ek(M), t, N) & \text{if } c \text{ has earlier been output by } \beta(E(ek(M), t, N)) \text{ for some } M \in \mathcal{N}, N \in \mathcal{N}. \\ E(ek(N), \tau(m), N^\tau) & \text{if } c \text{ is of type ciphertext and } \tau(A_{skof}(c)) = ek(N) \text{ for some } N \in \mathcal{N}. \end{cases} \]
\[m := A_D(A_{dk}(r_N), c) \neq \bot. \]
\[\tau(e) := ek(N) \text{ if } e \text{ has earlier been output by } \beta(ek(N)) \text{ for some } N \in \mathcal{N}. \]
\[\tau(e) := ek(N^\tau) \text{ if } e \text{ is of type encryption key.} \]
\[\tau(s) := sig(sk(M), t, N) \text{ if } s \text{ has earlier been output by } \beta(sig(sk(M), t, N)) \text{ for some } M, N \in \mathcal{N}. \]
\[\tau(s) := sig(sk(M), \tau(m), N^s) \text{ if } s \text{ is of type signature and } \tau(A_{skof}(s)) = ek(M) \text{ for some } M \in \mathcal{N} \text{ and } m := A_{verif}(A_{skof}(s), s) \neq \bot. \]
\[\tau(e) := ek(N^\tau) \text{ if } e \text{ is of type verification key.} \]
\[\tau(m) := \text{pair}(\tau(A_{skof}(m)), \tau(A_{skof}(m))) \text{ if } m \text{ is of type pair.} \]
\[\tau(m) := \text{string}_0(m') \text{ if } m \text{ is of type payload-string and } m' := A_{unstring}_0(m) \neq \bot. \]
\[\tau(m) := \text{string}_1(m') \text{ if } m \text{ is of type payload-string and } m' := A_{unstring}_1(m) \neq \bot. \]
\[\tau(m) := \text{empty} \text{ if } m \text{ is of type payload-string and } m = A_{empty}(). \]
\[\tau(c) := garbageE(\tau(A_{skof}(c)), N^\tau) \text{ if } c \text{ is of type ciphertext.} \]
\[\tau(s) := garbageSig(\tau(A_{skof}(s)), N^s) \text{ if } s \text{ is of type signature.} \]
\[\tau(m) := garbage(N^m) \text{ otherwise.} \]

The function \(\ell : T \rightarrow \{0,1\}^* \) is defined as \(\ell(t) := |\beta(t)| \). Note that \(\ell(t) \) does not depend on the actual values of \(r_N \) because of the length-regularity of \(A_E, A_{ek}, A_{dk}, A_{sig}, A_{sk}, A_{pair}, A_{string}_0, \) and \(A_{string}_1 \). Hence \(\ell(t) \) can be computed without accessing \(r_N \).

The faking simulator. The simulator \(\text{Sim}' \) is defined exactly like \(\text{Sim} \), except that it makes use of an encryption and a signing oracle (these oracles also supply keypairs \((ek_N, dk_N) \), resp. \((vk_N, sk_N) \)). When computing \(\beta(ek(N)) \) or \(\beta(dk(N)) \) with \(N \in \mathcal{N} \), it instructs the encryption oracle to generate a new encryption/decryption key pair \((ek_N, dk_N) \) (unless \((ek_N, dk_N) \) are already defined) and retrieves \(ek_N \) or \(dk_N \) from the oracle, respectively. When computing \(\beta(E(ek(N), t, M)) \) with \(N, M \in \mathcal{N} \), instead of computing \(A_E(A_{ek}(r_N), \beta(t), r_M) \), \(\text{Sim}' \) requests the encryption \(\text{Enc}(ek_N, \beta(t)) \) of \(\beta(t) \) from the encryption oracle (that is, \(\text{Sim}' \) has to compute \(\beta(t) \) but does not need to retrieve \(ek_N \)). However, the resulting ciphertext is stored and when later computing \(\beta(E(ek(N), t, M)) \) with the same arguments, the stored ciphertext is reused. When computing \(\beta(E(ek(N^\tau), t_2, M)) \) with \(M \in \mathcal{N} \), \(\text{Sim}' \) requests the encryption \(\text{Enc}(e, \beta(t)) \) from \(\text{Sim}' \). (In this case, the oracle encrypts \(\beta(t) \) using its own randomness but using the encryption key \(e \) provided by \(\text{Sim}' \).) When computing \(\tau(c) \), instead of computing \(A_D(A_{dk}(r_N), c) \), \(\text{Sim}' \) invokes the encryption oracle to decrypt \(c \) using the decryption key \(dk_N \) (again, \(\text{Sim}' \) does not need to retrieve \(dk_N \)).

Similarly, to compute \(\beta(ek(N)) \) or \(\beta(sk(N)) \), \(\text{Sim}' \) retrieves keys \(vk_N \) or \(sk_N \) from the signing oracle. To compute \(\beta(sig(sk(N), t, M)) \), \(\text{Sim}' \) invokes the signing oracle with message \(\beta(t) \) to get a signature under the signing key \(sk_N \). However, the resulting signature is stored and when later computing \(\beta(sig(sk(N), t, M)) \) with the same arguments, the stored ciphertext is reused. \(\text{Sim}' \) does not invoke the signing oracle for verifying signatures, instead \(\text{Sim}' \) executes \(A_{verif} \) directly.
The simulator Sim_f is defined like Sim', except that when computing $\beta(E(ek(N), t, M))$ with $N, M \in \mathcal{N}$, instead of invoking the encryption oracle with plaintext $\beta(t)$, it invokes it with plaintext $0^{\ell(t)}$. (But in a computation $\beta(E(ek(N^e), t, M))$ with $M \in \mathcal{N}$, the simulator Sim_f still uses $\beta(t)$ as plaintext.)

Properties of the simulator. We derive several properties of the simulators Sim and Sim_f that will finally allow us to show that Sim is a good simulator for key-safe protocols. In the following, let Π' always denote an key-safe probabilistic CoSP protocol. By construction, Sim, Sim' and Sim_f run in polynomial time.

Lemma 3 The full traces $H\text{-Trace}_{M,\Pi_p,\text{Sim}}$ and $H\text{-Trace}_{M,\Pi_p,\text{Sim}_f}$ are computationally indistinguishable.

Proof. Note that the difference between Sim and Sim' is that the randomness for the key generation, the encryption, and the signing is chosen by the algorithms KeyGen, SKeyGen, Enc, and Sig in Sim', while Sim uses nonces r_N instead. However, from protocol conditions 1, 2, 3, 4 it follows that Sim never uses a given randomness r_N twice (note that, since $N \in \mathcal{R}$, τ does not access r_N either). Hence the full traces $H\text{-Trace}_{M,\Pi_p,\text{Sim}}$ and $H\text{-Trace}_{M,\Pi_p,\text{Sim}_f}$ are indistinguishable.

Note that by definition of τ, Sim' invokes $\text{Dec}(dk_N, c)$ only for values c that have not been output by $\beta(E(ek(M), t, N))$. Thus $\text{Dec}(dk_N, c)$ is invoked only for values c that have not been output by $\text{Enc}(ek_N, \cdot)$. By protocol condition 3, dk_N is only used as an argument to Dec. Since $|\beta(t)| = |\gamma(t)|$ by definition of t, the IND-CCA property of $(\text{KeyGen}, \text{Enc}, \text{Dec})$ (implementation condition 19) implies that the full traces $H\text{-Trace}_{M,\Pi_p,\text{Sim}}$ and $H\text{-Trace}_{M,\Pi_p,\text{Sim}_f}$ are indistinguishable. Using the transitivity of computational indistinguishability, the lemma follows.

Lemma 4 Sim is indistinguishable for M, Π, A, and for every polynomial p.

The reader may wonder why the proof of [Lemma 4](given below) is so long in our framework, in particular in view of the fact that many prior works that follow a similar proof idea (e.g., [MW04, CW05, CKK06]) do not seem to need such a proof step. The answer is these works did indeed depend on a similar fact: In their proofs, the protocol constructs bitstrings from terms, and the simulator parses bitstrings, and we need that parsing a bitstring does indeed yield the original term. This fact is usually implicitly assumed to be true, but when verified in detail (such as done in [BU09]), the proof turns out to be very lengthy (Appendix A of [BU09] is dedicated to proving the analogue of the claims 1–4 of our Lemma 4).

Proof. We will first show that when fixing the randomness of the adversary and the protocol, the node trace $\text{Nodes}_{M,\Pi_p,\Pi, E}$ in the computational execution and the node trace $H\text{-Nodes}_{M,\Pi_p,\text{Sim}}$ in the hybrid execution are equal. Hence, fix the variables r_N for all $N \in \mathcal{N}_P$, fix a random tape for the adversary, and for each node ν fix a choice e_ν of an outgoing edge.

We assume that the randomness is chosen such that all bitstrings r_N, $A_{ek}(r_N)$, $A_{ek}(r_N)$, $A_{ek}(r_N)$, $A_{ek}(r_N)$, $A_{ek}(e, m, r_N)$, and $sig(s, m, r_N)$ are all pairwise distinct for all $N \in \mathcal{N}$ and all bitstrings e of type encryption key, s of type signing key, and $m \in \{0,1\}^*$ that result from some evaluation of β in the execution.

Note that this is the case with overwhelming probability: For terms of different types this follows from implementation condition 5. For keys, this follows from the fact that if two randomly chosen keys would be equal with non-negligible probability, the adversary could guess secret keys and thus break the IND-CCA property or the strong existential unforgeability (implementation conditions 19 and 20). For nonces, if two random nonces r_N, r_M would be equal with
non-negligible probability, so would encryption keys \(A_{ek}(r_N) \) and \(A_{ek}(r_M) \). For encryptions, by implementation condition \([21]\) the probability that \(A_{E}(e, m, r_N) \) for random \(r_N \in \text{Nonces}_k \) matches any given string is negligible. Since by protocol condition \([4]\) each \(A_{E}(e, m, r_N) \) computed by \(\beta \) uses a fresh nonce \(r_N \), this implies that \(A_{E}(e, m, r_N) \) equals a previously computed encryption is negligible. Analogously for signatures (implementation condition \([22]\) protocol conditions \([3] \) and \([8]\).

In the following, we designate the values \(f_i \) and \(\nu_i \) in the computational execution by \(f_i^C \) and \(\nu_i^C \), and in the hybrid execution by \(f_i^H \) and \(\nu_i^H \). Let \(s_i^C \) denote the state of the adversary \(E \) in the computational model, and \(s_i^H \) the state of the simulated adversary in the hybrid model.

Claim 1: In the hybrid execution, for any \(b \in \{0, 1\}^* \), \(\beta(\tau(b)) = b \).

This claim follows by induction over the length of \(b \) and by distinguishing the cases in the definition of \(\tau \).

Claim 2: In the hybrid execution, for any term \(t \) stored at a node \(\nu \), \(\beta(t) \neq \bot \).

By induction on the structure of \(t \).

Claim 3: For all terms \(t \not\in \mathcal{R} \) that occur in the hybrid execution, \(\tau(\beta(t)) = t \).

By induction on the structure of \(t \) and using the assumption that \(r_N, A_{ek}(r_N), A_{dk}(r_N), A_{ek}(r_N), A_{ek}(r_N), A_{ek}(r_N) \), as well as all occurring encryptions and signatures are pairwise distinct for all \(N \in \mathcal{N} \). For terms \(t \) that contain randomness nonces, note that by protocol condition \([4]\) randomness nonces never occur outside the last argument of \(E, \text{sig}, \text{ek}, \text{dk}, \text{vk}, \text{sk} \)-terms.

Claim 4: In the hybrid execution, at any computation node \(\nu = \nu_i \) with constructor or destructor \(F \) and arguments \(\nu_1, \ldots, \nu_n \) the following holds: Let \(t_i \) be the term stored at node \(\nu_i \) (i.e., \(t_j = f_j^H(\nu_j) \)). Then \(\beta(\text{eval}_F(t)) = A_F(\beta(t_1), \ldots, \beta(t_n)) \). Here the left hand side is defined iff the right hand side is.

We show Claim \([4]\) We distinguish the following cases:

Case 1: \("F = \text{ek}"\).

Note that by protocol condition \([1]\) we have \(t_1 \in \text{N}_P \). Then \(\beta(\text{ek}(t_1)) = A_{ek}(r_{t_1}) = A_{ek}(\beta(t_1)) \).

Case 2: \("F \in \{\text{dk}, \text{vk}, \text{sk}\}"\).

Analogous to the case \(F = \text{ek} \).

Case 3: \("F \in \{\text{pair, fst, snd, string}_0, \text{string}_0, \text{unstring}_0, \text{unstring}_1, \text{empty}\}"\).

Claim \([4]\) follows directly from the definition of \(\beta \).

Case 4: \("F = \text{isek}"\).

If \(t_1 = \text{ek}(t'_1) \), we have that \(t'_1 \in \mathcal{N} \) or \(t'_1 = N^m \) where \(m \) is of type ciphertext (as other subterms of the form \(\text{ek}() \) are either produced by the protocol nor by \(\tau \)). In both cases, \(\beta(\text{isek}(t'_1)) \) is of type encryption key. Hence \(\beta(\text{isek}(t_1)) = \beta(\text{ek}(t'_1)) = A_{\text{isek}}(\beta(\text{ek}(t'_1))) = A_{\text{isek}}(\beta(t_1)) \).

If \(t_1 \) is not of the form \(\text{ek}() \), then \(\beta(t_1) \) is not of type public key (this uses that \(\tau \) only uses \(N^m \) with \(m \) of type public key inside a term \(\text{ek}(N^m) \)). Hence \(\beta(\text{isek}(t_1)) = \bot = A_{\text{isek}}(\beta(t_1)) \).

Case 5: \("F \in \{\text{iszuk, isence, isssig}\}"\).

Similar to the case \(F = \text{isek} \).

Case 6: \("F = \text{ekof}"\).

If \(t_1 = E(\text{ek}(u_1), u_2, M) \) with \(M \in \mathcal{N} \), we have that \(\beta(t_1) = A_{E}(\beta(\text{ek}(u_1)), \beta(u_2), r_M) \). By implementation condition \([8]\) \(A_{\text{ekof}}(\beta(t_1)) = \beta(\text{ek}(u_1)) \). Furthermore, \(\text{ekof}(t_1) = \text{ek}(u_1) \), hence \(A_{\text{ekof}}(\beta(t_1)) = \beta(\text{ekof}(t_1)) \). If \(t_1 = E(\text{ek}(u_1), u_2, N^m) \), by protocol condition \([9]\) \(t_1 \) was not honestly generated. Hence, by definition of \(\tau \), \(m \) is of type ciphertext, and \(\text{ek}(u_1) = \tau(A_{\text{ekof}}(m)) \). Thus with Claim \([4]\) \(\beta(\text{ek}(u_1)) = A_{\text{ekof}}(m) \). Furthermore, we have \(\beta(t_1) = m \) by definition of \(\beta \) and thus \(A_{\text{ekof}}(\beta(t_1)) = \beta(\text{ek}(u_1)) = \beta(\text{ekof}(t_1)) \). If
$t_1 = \text{garbage}E(u_1, u_2)$, the proof is analogous. In all other cases for t_1, $\beta(t_1)$ is not of type ciphertext, hence $A_{e_{kof}}(\beta(t_1)) = \bot$ by implementation condition 8. Furthermore $e_{kof}(t_1) = \bot$. Thus $\beta(e_{kof}(t_1)) = \bot = A_{e_{kof}}(\beta(t_1))$.

Case 7: “$F = v_{kof}$”.
If $t_1 = \text{sig}(sk(N), u_1, M)$ with $N, M \in N$, we have that $\beta(t_1) = A_{\text{sig}}(A_{sk}(r_N), \beta(u_2), r_M)$. By implementation condition 8 $A_{e_{kof}}(\beta(t_1)) = A_{sk}(r_N)$. Furthermore, $v_{kof}(t_1) = vk(N)$, hence $A_{e_{kof}}(\beta(t_1)) = A_{sk}(r_N) = \beta(vk(N)) = \beta(v_{kof}(t_1))$. All other cases for t_1 are handled like in the case of $F = e_{kof}$.

Case 8: “$F = E$”.
By protocol condition 11 $t_3 = N \in N$. If $t_1 = ek(u_1)$ we have $\beta(E(t_1, t_2, t_3)) = A_E(\beta(t_1), \beta(t_2), r_N)$ by definition of β. Since $\beta(N) = r_N$, we have $\beta(E(t_1, t_2, t_3)) = A_E(\beta(t_1), \beta(t_2), \beta(t_3))$. If t_1 is not of the form $ek(u_1)$, then $E(t_1, t_2, t_3) = \bot$ and by definition of β, $\beta(t_1)$ is not of type encryption key and hence by implementation condition 10 $\beta(E(t_1, t_2, t_3)) = A_{ek}(\beta(t_1), \ldots) = \bot = \beta(E(t_1, t_2, t_3))$.

Case 9: “$F = D$”.
By protocol condition 8 $t_1 = dk(N)$ with $N \in N$. We distinguish the following cases for t_2:

Case 9.1: “$t_2 = E(ek(N), u_2, M)$ with $M \in N$”.
Then $A_D(\beta(t_1), \beta(t_2)) = A_D(A_{dk}(r_N), A_E(A_{ek}(N), \beta(u_2), r_M)) = \beta(u_2)$ by implementation condition 12. Furthermore $\beta(D(t_1, t_2)) = \beta(u_2)$ by definition of D.

Case 9.2: “$t_2 = E(ek(N), u_2, N^c)$”.
Then t_2 was produced by τ and hence c is of type ciphertext and $\tau(A_{D}(A_{dk}(r_N), c)) = u_2$. Then by Claim 11 $A_D(A_{dk}(r_N), c) = \beta(u_2)$ and hence $A_D(\beta(t_1), \beta(t_2)) = A_D(A_{dk}(r_N), c) = \beta(\beta(u_2)) = \beta(D(t_1, t_2))$.

Case 9.3: “$t_2 = \text{garbage}E(u_1, u_2, u_3)$”.
As shown above (case $F = e_{kof}$), $A_{e_{kof}}(\beta(E(u_1, u_2, u_3)) = \beta(e_{kof}(E(u_1, u_2, u_3))) = \beta(u_1)$. Moreover, from Claim 8 $A_{e_{kof}}(\beta(E(u_1, u_2, u_3))) = \beta(u_1) \neq \beta(e_{kof}(E(u_1, u_2, u_3))) = A_{e_{kof}}(r_N)$. Thus by implementation condition 11 $A_D(\beta(t_1), \beta(t_2)) = A_D(A_{dk}(r_N), \beta(E(u_1, u_2, u_3))) = \bot$. Furthermore, $D(t_1, t_2) = \bot$ and thus $\beta(D(t_1, t_2)) = \bot$.

Case 9.4: “$t_2 = \text{garbage}E(u_1, N^c)$”.
Assume that $m := A_D(\beta(t_1), \beta(t_2)) = A_D(A_{ek}(r_N), c) \neq \bot$. By implementation condition 11 this implies $A_{e_{kof}}(\beta(c)) = A_{sk}(r_N)$ and thus $\tau(A_{e_{kof}}(\beta(c))) = \tau(A_{sk}(r_N)) = ek(N)$. By protocol condition 8 t_2 has been produced by τ, i.e., $t_2 = \tau(c)$. Hence c is of type ciphertext. Then, however, we would have $\tau(c) = E(ek(N), \tau(m), N^c) \neq \bot$. This is a contradiction to $t_2 = \tau(c)$, so the assumption that $A_D(\beta(t_1), \beta(t_2)) \neq \bot$ was false. So $A_D(\beta(t_1), \beta(t_2)) = \bot = \beta(\bot) = \beta(D(t_1, t_2))$.

Case 9.5: “All other cases”.
Then $\beta(t_2)$ is not of type ciphertext. By implementation condition 8 $A_{e_{kof}}(\beta(t_2)) = \bot$. Hence $A_{e_{kof}}(\beta(t_2)) \neq A_{ek}(r_N)$ and by implementation condition 11 $A_D(\beta(t_1), \beta(t_2)) = A_D(A_{dk}(r_N), \beta(t_2)) = \bot = \beta(D(t_1, t_2))$.

Case 10: “$F = \text{sig}$”.
By protocol conditions 8 and 11 we have that $t_1 = sk(N)$ and $t_3 = M$ with $N, M \in N$. Then $\beta(\text{sig}(t_2)) = A_{\text{sig}}(A_{sk}(r_N), \beta(t_3), r_M) = A_{\text{sig}}(\beta(sk(N)), \beta(t_2), \beta(M)) = A_{\text{sig}}(\beta(t_1), \beta(t_2), \beta(t_3))$.

Case 11: “$F = \text{verify}$”.
We distinguish the following subcases:
Case 11.1: \(t_1 = \text{vk}(N) \) and \(t_2 = \text{sig}(\text{sk}(N), u_2, M) \) with \(N, M \in \mathcal{N} \).

Then \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = A_{\text{verify}}(\text{sk}(N), A_{\text{sig}}(\text{sk}(N), \beta(u_2), r_M)) \) \(\equiv \) \(\beta(u_2) = \beta(vk(\bar{l})) \) where \(\bar{l} \) uses implementation condition 3.

Case 11.2: \(t_2 = \text{sig}(\text{sk}(N), u_2, M) \) and \(t_1 \neq \text{vk}(N) \) with \(N, M \in \mathcal{N} \).

By Claim 3 \(\beta(t_1) \neq \beta(\text{vk}(N)) \) Furthermore \(A_{\text{verify}}(\beta(\text{vk}(N)), \beta(t_2)) = A_{\text{verify}}(\beta(t_1), A_{\text{sig}}(\text{sk}(N), \beta(u_2), r_M)) \equiv \beta(u_2) \neq \bot \). Hence with implementation condition 14 \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = \bot = \beta(\bot) = \text{verify}(t_1, t_2) \).

Case 11.3: \(t_1 = \text{vk}(N) \) and \(t_2 = \text{sig}(\text{sk}(N), u_2, M^*) \).

As in the previous case, \(A_{\text{verify}}(\text{vk}(N), s) \neq \bot \) and \(\beta(\text{vk}(N)) = \text{vk}(s) \). Since \(t_1 \neq \text{vk}(N) \), by Claim 3 \(\beta(t_1) \neq \beta(\text{vk}(N)) = \text{vk}(s) \). From implementation condition 14 and \(A_{\text{verify}}(\text{vk}(N), s) \neq \bot \), we have \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = A_{\text{verify}}(\beta(t_1), s) = \bot = \beta(\bot) = A_{\text{verify}}(t_1, t_2) \).

Case 11.4: \(t_2 = \text{sig}(\text{sk}(N), u_2, M^*) \) and \(t_1 \neq \text{vk}(N) \).

Then \(t_2 \) was produced by \(\tau \) and hence \(s \) is of type signature with \(\tau(A_{\text{skof}}(s)) = \text{vk}(N) \) and \(m := A_{\text{verify}}(A_{\text{skof}}(s), s) \neq \bot \) and \(u_2 = \tau(m) \). Hence with Claim 1 we have \(m = \beta(\tau(m)) = \beta(u_2) \). Then \(\beta(t_1) = \beta(\text{vk}(N)) = \beta(\tau(A_{\text{skof}}(s))) = A_{\text{skof}}(s) \). Thus \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = A_{\text{verify}}(A_{\text{skof}}(s), s) = m = \beta(u_2) \). And \(\beta(\text{verify}(t_1, t_2)) = \beta(\text{verify}(\text{vk}(N), \text{sig}(\text{sk}(N), u_2, M^*))) = \beta(u_2) \).

Case 11.5: \(t_2 = \text{garbage}.\text{Sig}(u_1, N^*) \).

Then \(t_2 \) was produced by \(\tau \) and hence \(s \) is of type signature and either \(A_{\text{verify}}(A_{\text{skof}}(s), s) = \bot \) or \(\tau(A_{\text{skof}}(s)) \) is not of the form \(\text{vk}(...) \). The latter case only occurs if \(A_{\text{skof}}(s) = \bot \) as otherwise \(A_{\text{skof}}(s) \) is of type verification key and hence \(\tau(A_{\text{skof}}(s)) = \text{vk}(...) \). Hence in both cases \(A_{\text{verify}}(A_{\text{skof}}(s), s) = \bot \). If \(\beta(t_1) = A_{\text{skof}}(s) \) then \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = A_{\text{verify}}(A_{\text{skof}}(s), s) = \bot = \beta(\text{verify}(t_1, t_2)) \). If \(\beta(t_1) \neq A_{\text{skof}}(s) \) then by implementation condition 14 \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = A_{\text{verify}}(\beta(t_1), s) = \bot \). Thus in both cases, with \(\text{verify}(t_1, t_2) = \bot \) we have \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = \bot = \beta(\text{verify}(t_1, t_2)) \).

Case 11.6: “All other cases”.

Then \(\beta(t_2) \) is not of type signature, hence by implementation condition 2 \(A_{\text{skof}}(\beta(t_2)) = \bot \), hence \(\beta(t_1) \neq A_{\text{skof}}(\beta(t_2)) \), and by implementation condition 14 we have \(A_{\text{verify}}(\beta(t_1), \beta(t_2)) = \bot = \beta(\text{verify}(t_1, t_2)) \).

Case 12: “\(F = \text{equals} \)”.

If \(t_1 = t_2 \) we have \(\beta(\text{equals}(t_1, t_2)) = \beta(t_1) = A_{\text{equals}}(\beta(t_1), \beta(t_2)) = A_{\text{equals}}(\beta(t_1), \beta(t_2)) \). If \(t_1 \neq t_2 \), then \(t_1, t_2 \notin \mathcal{R} \). To see this, let \(N_1 \) be the node associated with \(t_1 \). If \(N_1 \) is a nonce computation node, then \(t_1 \notin \mathcal{R} \) follows from protocol conditions 2 and 3. In case \(N_1 \) is an input node, \(t_1 \notin \mathcal{R} \) follows by definition of \(\tau \). Finally, if \(N_1 \) is a destructor computation node, \(t_1 \notin \mathcal{R} \) follows inductively. (Similarly for \(t_2 \).) By Claim 3 \(t_1, t_2 \notin \mathcal{R} \) implies \(\beta(t_1) \neq \beta(t_2) \) and hence \(\beta(\text{equals}(t_1, t_2)) = \bot = A_{\text{equals}}(\beta(t_1), \beta(t_2)) \) as desired.

Case 13: “\(F \in \text{garbage, garbage.E, garbage.Sig} \) or \(N \in \mathcal{N}_E \)”.

By protocol condition 3 the constructors \(\text{garbage, garbage.E, garbage.Sig} \), and \(N \in \mathcal{N}_E \) do not occur in the protocol.

Thus Claim 4 holds.

We will now show that for the random choices fixed above, \(\text{Nodes}^p_{M, A, B, E} = H \cdot \text{Nodes}_{M, B, A, \Pi, E} \).

To prove this, we show the following invariant: \(f'_i = \beta \circ f_i^C \) and \(\nu'_i = \nu_i^C \) and \(s_i = s_i' \) for all \(i \geq 0 \). We show this by induction on \(i \).

We have \(f_0^C = f_0^C = \emptyset \) and \(\nu_0^C = \nu_0^C \) is the root node, so the invariant is satisfied for \(i = 0 \). Assume that the invariant holds for some \(i \). If \(\nu_i' \) is a nondeterministic node, \(\nu_{i+1}' = \nu_{i+1}^C \) is
determined by $e_{\nu} = e_{i, C}$. Since a nondeterministic node does not modify f and the adversary is not activated, $f'_{i+1} = f'_i = \beta \circ f^C = \beta \circ f^C_{i+1}$ and $s_i = s'_i$. Hence the invariant holds for $i + 1$ if ν'_i is a nondeterministic node.

If ν'_i is a computation node with constructor or destructor F, we have that $f'_{i+1}(\nu'_i) = A_F(f'_i(\nu_1), \ldots, f'_i(\nu_n)) = A_F(\beta(f^C(\nu_1)), \ldots, \beta(f^C(\nu_n)))$ for some nodes ν_i depending on the label of ν'_i. And $f^C_{i+1}(\nu'_i) = f^C_{i+1}(\nu'_i) = \text{final}_F(f'_i(\nu_1), \ldots, f'_i(\nu_n))$. From Claim 3 it follows that $\beta(f^C_{i+1}(\nu'_i)) = f^C_{i+1}(\nu'_i)$ where the lhs is defined iff the rhs is. Hence $\beta \circ f^C = f^C_{i+1}$. By Claim 2, $\beta(f^C_{i+1}(\nu'_i))$ is defined if $f^C_{i+1}(\nu'_i)$ is. Hence $f^C_{i+1}(\nu'_i)$ is defined iff $f'_{i+1}(\nu'_i)$ is. If $f'_{i+1}(\nu'_i)$ is defined, then ν'_{i+1} is the yes-successor of $\nu'_i = \nu^C_{i+1}$ and the no-successor otherwise. If $f'_{i+1}(\nu'_i)$ is defined, then ν'_{i+1} is the yes-successor of $\nu'_i = \nu^C_{i+1}$ and the no-successor otherwise. Thus $\nu'_{i+1} = \nu^C_{i+1}$.

The adversary E is not invoked, hence $s'_{i+1} = s^C_{i+1}$. So the invariant holds for $i + 1$ if ν'_i is a computation node with a constructor or destructor.

If ν'_i is a computation node with nonce $N \in \mathbb{N}_P$, we have that $f'_{i+1}(\nu'_i) = r_N = \beta(N) = \beta(f^C_{i+1}(\nu'_i))$. Hence $\beta \circ f^C_{i+1} = f'_{i+1}$. By Definition 9 the ν^C_{i+1} is the yes-successor of ν'_i. Since $N \in T$, ν^C_{i+1} is the yes-successor of $\nu^C = \nu'_i$. Thus $\nu'_{i+1} = \nu^C_{i+1}$. The adversary E is not invoked, hence $s_{i+1} = s^C_{i+1}$. So the invariant holds for $i + 1$ if ν'_i is a computation node with a nonce.

In the case of a control node, the adversary E in the computational execution and the simulator in the hybrid execution get the out-metadata l of the node ν'_i or ν^C_i, respectively. The simulator passes l to the simulated adversary. Thus, since $s'_i = s^C_i$, we have that $s'_{i+1} = s^C_{i+1}$, and in the computational and the hybrid execution, E answer with the same in-metadata l'. Thus $\nu'_{i+1} = \nu^C_{i+1}$. Since a control node does not modify f we have $f'_{i+1} = f'_i = \beta \circ f^C = \beta \circ f^C_{i+1}$. Hence the invariant holds for $i + 1$ if ν'_i is a control node.

In the case of an input node, the adversary E in the computational execution and the simulator in the hybrid execution is asked for a bitstring m' or bitstring t^C, respectively. The simulator produces this string by asking the simulated adversary E for a bitstring m^C and setting $t^C := \tau(m^C)$. Since $s'_i = s^C_i$, $m' = m^C$. Then by definition of the computational and hybrid executions, $f'_{i+1}(\nu'_i) = m'$ and $f^C_{i+1}(\nu'_i) = t^C = \tau(m')$. Thus $f'_{i+1}(\nu'_i) = m' \iff \beta(\tau(m')) = \beta(f^C_{i+1}(\nu'_i))$ where (*) follows from Claim 4. Since $f'_{i+1} = f'_i$ and $f^C_{i+1} = f^C$ everywhere else, we have $f'_{i+1} = \beta \circ f^C_{i+1}$. Furthermore, since input nodes have only one successor, $\nu'_{i+1} = \nu^C_{i+1}$. Thus the invariant holds for $i + 1$ in the case of an input node.

In the case of an output node, the adversary E in the computational execution gets $m' := f'_i(\nu_1)$ where the node ν_1 depends on the label of ν'_i. In the hybrid execution, the simulator gets $t^C := f^C(\nu_1)$ and sends $m^C := \beta(t^C)$ to the simulated adversary E. By induction hypothesis we then have $m = m^C$, so the adversary gets the same input in both executions. Thus $s'_{i+1} = s^C_{i+1}$. Furthermore, since output nodes have only one successor, $\nu'_{i+1} = \nu^C_{i+1}$. And $f'_{i+1} = f'_i$ and $f^C_{i+1} = f^C$, so $f'_{i+1} = \beta \circ f^C_{i+1}$. Thus the invariant holds for $i + 1$ in the case of an output node.

From the invariant it follows, that the node trace is the same in both executions.

Since random choices with all nonces, keys, encryptions, and signatures being pairwise distinct occur with overwhelming probability (as discussed above), the node traces of the real and the hybrid execution are indistinguishable. □

Lemma 5 In a given step of the hybrid execution with Sim_f, let S be the set of messages sent from Π^c to Sim_f. Let $u' \in T$ be the message sent from Sim_f to Π^c in that step. Let C be a context and $u \in T$ such that $u' = C[u]$ and $S \not\ni u$ and C does not contain a subterm of the form $\text{sig}(., ., .)$ (\square denotes the hole of the context C.)
Then there exists a term t_{bad} and a context D such that D obeys the following grammar:

$$D := \square | \text{pair}(t, D) | \text{pair}(D, t) | E(ek(N), D, M)$$

$$| E(D, t, M) | \text{sig}(sk(M), D, M)$$

$$| \text{garbage}E(D, M) | \text{garbage}Sig(D, M)$$

with $N \in \mathbb{N}_P, M \in \mathbb{N}_E, t \in T$

and such that $u = D[t_{\text{bad}}]$ and such that $S \not \vdash t_{\text{bad}}$ and such that one of the following holds:

$t_{\text{bad}} \in \mathbb{N}_P$, or $t_{\text{bad}} = E(p, m, N)$ with $N \in \mathbb{N}_P$, or $t_{\text{bad}} = \text{sig}(k, m, N)$ with $N \in \mathbb{N}_P$, or

$t_{\text{bad}} = \text{sig}(sk(N), m, M)$ with $N \in \mathbb{N}_P$, $M \in \mathbb{N}_E$ or $t_{\text{bad}} = ek(N)$ with $N \in \mathbb{N}_P$, or $t_{\text{bad}} = sk(N)$ with $N \in \mathbb{N}_P$.

Proof. We prove the lemma by structural induction on M. We distinguish the following cases:

Case 1: “$u = \text{garbage}(u_1)$”.

By protocol condition [this one is not given], the protocol does not contain garbage-computation nodes. Thus u is not an honestly generated term. Hence it was produced by an invocation $\tau(m)$ for some $m \in \{0,1\}^*$, and hence $u = \text{garbage}(N^m)$. Hence $S \vdash u$ in contradiction to the premise of the lemma.

Case 2: “$u = \text{garbage}E(u_1, u_2)$”.

By protocol condition [this one is not given], the protocol does not contain garbageE-computation nodes. Thus u is not an honestly generated term. Hence it was produced by an invocation $\tau(c)$ for some $c \in \{0,1\}^*$, and hence $u = \text{garbage}E(u_1, N^m)$. Since $S \vdash N^m$ and $S \not \vdash u$, we have $S \not \vdash u_1$. Hence by the induction hypothesis, there exists a subterm t_{bad} of u_1 and a context D' satisfying the conclusion of the lemma for u_1. Then t_{bad} and $D' := \text{garbage}E(D, N^m)$ satisfy the conclusion of the lemma for u.

Case 3: “$u = \text{garbage}Sig(u_1, u_2)$”.

By protocol condition [this one is not given], the protocol does not contain garbageSig-computation nodes. Thus u is not an honestly generated term. Hence it was produced by an invocation $\tau(c)$ for some $c \in \{0,1\}^*$, and hence $u = \text{garbage}Sig(u_1, N^m)$. Since $S \vdash N^m$ and $S \not \vdash u$, we have $S \not \vdash u_1$. Hence by the induction hypothesis, there exists a subterm t_{bad} of u_1 and a context D' satisfying the conclusion of the lemma for u_1. Then t_{bad} and $D' := \text{garbage}Sig(D, N^m)$ satisfy the conclusion of the lemma for u.

Case 4: “$u = dk(u_1)$”.

By protocol condition [this one is not given], any dk-computation node occurs only as the first argument of a D-destroyor node. The output of the destructor D only contains a subterm $dk(u_1)$ if its second argument already contained such a subterm. Hence a term $dk(u_1)$ cannot be honestly generated. But subterms of the form $dk(\cdot)$ are not in the range of τ. (Except if $dk(\cdot)$ was given as argument to a call to β. However, as β is only invoked with terms sent by Π_f, this can only occur if $dk(\cdot)$ was honestly generated or produced by τ.) Thus no term sent by Sim_f contains $dk(\cdot)$. Hence u cannot be a subterm of u'.

Case 5: “$u = ek(u_1)$ with $u_1 \notin \mathbb{N}_P$”.

By protocol condition [this one is not given], the argument of an ek-computation node is an N-computation node with $N \in \mathbb{N}_P$. Hence u is not honestly generated. Hence it was produced by an invocation $\tau(e)$ for some $e \in \{0,1\}^*$, and hence $u = ek(N^e)$. Hence $S \vdash u$ in contradiction to the premise of the lemma.

Case 6: “$u = ek(N)$ with $N \in \mathbb{N}_P$”.

The conclusion of the lemma is fulfilled with $D := \square$ and $t_{\text{bad}} := u$.

25
Case 7: “\(u = \nu k(1)\) with \(u_1 \notin N_P\”).

By protocol condition 1, the argument of a \(\nu k\)-computation node is an \(N\)-computation node with \(N \in N_P\). Hence \(u\) is not honestly generated. Hence it was produced by an invocation \(\tau(e)\) for some \(e \in \{0, 1\}^*\), and hence \(u = \nu k(N^e)\). Hence \(S \vdash u\) in contradiction to the premise of the lemma.

Case 8: “\(u = \nu k(N)\) with \(N \in N_P\”).

The conclusion of the lemma is fulfilled with \(D := \square\) and \(t_{bad} := u\).

Case 9: “\(u = \nu k(N)\)”.

Say a subterm \(sk(N)\) occurs free in some term \(t\) if an occurrence of \(sk(N)\) in \(t\) is not the first argument of a \(\sigma\)-constructor in \(t\). Since \(C\) is not of the form \(\sigma(q\ldots)\), we have that \(u\) occurs free in \(u\). However, by protocol condition 7, \(\Pi^c\) only sends a free \(sk(N)\) if \(Sim_f\) first sends one. And by construction of \(\tau\), \(Sim_f\) sends a free \(sk(N)\) only if \(sk(N)\) was given as an argument to a call to \(\beta\). And \(sk(N)\) is given as an argument to \(\beta\) only if it is sent by \(\Pi^c\). Hence \(Sim_f\) cannot have sent \(u\) in contradiction to the premise of the lemma.

Case 10: “\(u = pair(u_1, u_2)\)”.

Since \(S \not\vdash u_i\) for some \(i \in \{1, 2\}\). Hence by induction hypothesis, there exists a subterm \(t_{bad}\) of \(u_i\) and a context \(D\) satisfying the conclusion of the lemma for \(u_i\). Then \(t_{bad}\) and \(D' = pair(D, u_2)\) or \(D' = pair(u_1, D)\) satisfy the conclusion of the lemma for \(u\).

Case 11: “\(u = string_i(u_1)\), \(i \in \{0, 1\}\) or \(u = empty\)”.

Then, since \(u \in T\), \(u\) contains only the constructors \(string_0, string_1, empty\). Hence \(S \vdash u\) in contradiction to the premise of the lemma.

Case 12: “\(u \in N_P\)”.

The conclusion of the lemma is fulfilled with \(D := \square\) and \(t_{bad} := u\).

Case 13: “\(u \in N_E\)”.

Then \(S \not\vdash u\) in contradiction to the premise of the lemma.

Case 14: “\(u = E(u_1, u_2, N)\) with \(N \in N_P\)”.

The conclusion of the lemma is fulfilled with \(D := \square\) and \(t_{bad} := u\).

Case 15: “\(u = E(u_1, u_2, u_3)\) with \(S \not\vdash u_1\) and \(u_3 \notin N_P\)”.

By protocol condition 1, the third argument of an \(E\)-computation node is a \(N\)-computation node with \(N \in N_P\). Hence \(u\) is not honestly generated. Hence it was produced by an invocation \(\tau(c)\) for some \(c \in \{0, 1\}^*\), and hence \(u = E(ek(N), u_2, N^c)\) for some \(N \in N_P\). Since \(S \not\vdash u_1\), by induction hypothesis, there exists a subterm \(t_{bad}\) of \(u_1 = ek(N)\) and a context \(D\) satisfying the conclusion of the lemma for \(ek(N)\). Then \(t_{bad}\) and \(D' = E(D, u_2, N^c)\) satisfy the conclusion of the lemma for \(u\).

Case 16: “\(u = E(u_1, u_2, u_3)\) with \(S \vdash u_1\) and \(u_3 \notin N_P\)”.

Analogous to the previous case, \(u = E(ek(N), u_2, N^c)\) for some \(N \in N_P\). From \(S \vdash u_1\), \(S \vdash N^c\), and \(S \not\vdash u_2\) we have \(S \not\vdash u_2\). Hence by induction hypothesis, there exists a subterm \(t_{bad}\) of \(u_2\) and a context \(D\) satisfying the conclusion of the lemma for \(u_2\). Then \(t_{bad}\) and \(D' = E(ek(N), D, N^c)\) satisfy the conclusion of the lemma for \(u\).

Case 17: “\(u = \sigma q(u_1, u_2)\) with \(N \in N_P\)”.

The conclusion of the lemma is fulfilled with \(D := \square\) and \(t_{bad} := u\).

Case 18: “\(u = \sigma q(sk(N), u_2, u_3)\) with \(u_3 \notin N_P\) and \(N \in N_P\)”.

Since \(u \in T\) we have \(u_3 \in N\), hence \(u_3 \in N_E\). The conclusion of the lemma is fulfilled with \(D := \square\) and \(t_{bad} := u\).
Case 19: \(u = \text{sig}(u_1, u_2, u_3) \) with \(S \vdash u_1 \) and \(u_3 \notin N_P \) and \(u_1 \) is not of the form \(\text{sk}(N) \) with \(N \in N_P \).

By protocol condition \(\square \) the third argument of an \(E \)-computation node is an \(N \)-computation node with \(N \in N_P \). Hence \(u \) is not honestly generated. Hence it was produced by an invocation \(\tau(s) \) for some \(s \in \{0,1\}^* \), and hence \(u = \text{sig}(\text{sk}(N), u_2, N^*) \) for some \(N \in N \).

Since \(u_1 \) is not of the form \(\text{sk}(N) \) with \(N \in N_P \), we have \(N \in N_E \). From \(S \vdash u_1 \), \(S \vdash N^c \), and \(S \ntriangleright u \) we have \(S \ntriangleright u_2 \). Hence by induction hypothesis, there exists a subterm \(t_{bad} \) of \(u_2 \) and a context \(D \) satisfying the conclusion of the lemma for \(u_2 \). Then \(t_{bad} \) and \(D' = \text{sig}(\text{sk}(N), D, N^*) \) satisfy the conclusion of the lemma for \(u \).

Case 20: \(u = \text{sig}(u_1, u_2, N) \) with \(S \ntriangleright u_1 \) and \(u_3 \notin N_P \).

As in the previous case, \(u = \text{sig}(\text{sk}(N), u_2, N^*) \) for some \(N \in N \). Since \(S \ntriangleright u_1 \), \(N \notin N_E \). Hence \(N \in N_P \). Thus conclusion of the lemma is fulfilled with \(D := \square \) and \(t_{bad} := u \).

\[\square \]

Lemma 6 For any (direct or recursive) invocation of \(\beta(t) \) performed by \(\text{Sim}_f \), we have that \(S \vdash t \) where \(S \) is the set of all terms sent by \(\Pi^c \) to \(\text{Sim}_f \) up to that point.

Proof. We perform an induction on the point in time at which \(\beta(t) \) has been invoked. Thus, assume that Lemma 6 holds for all invocations before the current invocation \(\beta(t) \). We distinguish two cases: In the first case, \(\beta(t) \) is directly invoked by the simulator \(\text{Sim}_f \) (not through a recursive invocation). In this case, \(t \) is a message the simulator received from the protocol, hence \(t \in S \) and thus \(S \vdash t \).

In the second case, \(\beta(t) \) has not been directly invoked by \(\text{Sim}_f \). Instead, \(\beta(t) \) has been invoked as a subroutine from a call \(\beta(t') \) for some term \(t' \). By definition of \(\beta \), this leaves the following cases for \(t' \):

\[t' = E(t, u, M) \text{ or } t' = E(ek(N^e), t, M) \text{ or } t' = \text{pair}(t, u) \text{ or } t' = \text{string}_0(t) \text{ or } t' = \text{string}_1(t) \text{.} \]

Here \(N, M \in N \), \(u \in T \), and \(e \in \{0,1\}^* \).

At the first glance it might seem that we are missing the case \(t' = E(ek(N), t, M) \) with \(N, M \in N \). However, in this case \(\beta(t) \) is not invoked by \(\beta(t') \) because the simulator \(\text{Sim}_f \) uses the plaintext \(0^{\ell(t)} \) instead of \(\beta(t) \).

In all cases except \(t' = E(ek(N^e), t, M) \), from the definition of \(\vdash \) and the fact that \(S \vdash t' \), we have that \(S \vdash t \). Hence Lemma 6 holds in those cases.

In the case \(t' = E(ek(N^e), t, M) \), we have that \(S \vdash N^e \) since \(N^e \in N_E \), hence \(S \vdash \text{sk}(N^e) \) and thus \(S \vdash t \). This shows Lemma 6 in the remaining case.

\[\square \]

Lemma 7 \(\text{Sim}_f \) is \(\text{DY} \) for \(M \) and \(\Pi^c \).

Proof. Let \(a_1, \ldots, a_n \) be terms sent by the protocol to \(\text{Sim}_f \). Let \(u_1, \ldots, u_n \) be the terms sent by \(\text{Sim}_f \) to the protocol. Let \(S_i := \{a_1, \ldots, a_i\} \). If \(\text{Sim}_f \) is not \(\text{DY} \), then with non-negligible probability there exists an \(i \) such that \(S_i \ntriangleright u_i \). Fix the smallest such \(i_0 \) and set \(S := S_{i_0} \) and \(u := u_{i_0} \). By Lemma 5 (with \(u' := u \) and \(C := \square \)), we have that there is a term \(t_{bad} \) and a context \(D \) obeying the grammar given in Lemma 5 and such that \(u = D[t_{bad}] \) and such that \(S \ntriangleright t_{bad} \) and such that one of the following holds: (a) \(t_{bad} \in N_P \), or (b) \(t_{bad} = E(p, m, N) \) with \(N \in N_P \), or (c) \(t_{bad} = \text{sig}(k, m, N) \) with \(N \in N_P \), or (d) \(t_{bad} = \text{sig}(\text{sk}(N), m, M) \) with \(N \in N_P, M \in N_E \) or (e) \(t_{bad} = ek(N) \) with \(N \in N_P \), or (f) \(t_{bad} = vk(N) \) with \(N \in N_P \).

By construction of the simulator, if the simulator outputs \(u \), we know that the simulated adversary \(E \) has produced a bitstring \(m \) such that \(\tau(m) = u = D[t_{bad}] \). By definition of \(\tau \), during the computation of \(\tau(m) \), some recursive invocation of \(\tau \) has returned \(t_{bad} \). Hence the simulator has computed a bitstring \(m_{bad} \) with \(\tau(m_{bad}) = t_{bad} \).

We are left to show that such a bitstring \(m_{bad} \) can be found only with negligible probability.

We distinguish the possible values for \(t_{bad} \) (as listed in Lemma 5):
Case 1: \(t_{\text{bad}} = N \in \mathbf{NP} \).

By definition of \(\beta \) and using the fact that \(\text{Sim}_f \) uses the signing and encryption oracle for all invocations of \(\beta \) except \(\beta(N) \) that involve \(r_N \) (such as \(\beta(\text{Sign}(N)) \)), we have that \(\text{Sim}_f \) accesses \(r_N \) only when computing \(\beta(N) \) and in \(\tau \). Since \(S \not\ni t_{\text{bad}} = N \), by \text{Lemma 6} we have that \(\beta(N) \) is never invoked, thus \(r_N \) is never accessed through \(\beta \). In \(\tau \), \(r_N \) is only used in comparisons. More precisely, \(\tau(r) \) checks for all \(N \in \mathbf{NP} \) whether \(r = r_N \). Such checks do not help in guessing \(r_N \) since when such a check succeeds, \(r_N \) has already been guessed. Thus the probability that \(m_{\text{bad}} = r_N \) occurs as input of \(\tau \) is negligible.

Case 2: \("t_{\text{bad}} = E(p, m, N) \) with \(N \in \mathbf{NP} ")

Then \(\tau(m_{\text{bad}}) \) returns \(t_{\text{bad}} \) only if \(m_{\text{bad}} \) was the output of an invocation of \(\beta(E(p, m, N)) = \beta(t_{\text{bad}}) \). But by \text{Lemma 6}, \(\beta(t_{\text{bad}}) \) is never invoked, so this case does not occur.

Case 3: \("t_{\text{bad}} = \text{Sign}(k, m, N) \) with \(N \in \mathbf{NP} ")

Then \(\tau(m_{\text{bad}}) \) returns \(t_{\text{bad}} \) only if \(m_{\text{bad}} \) was the output of an invocation of \(\beta(\text{Sign}(k, m, N)) = \beta(t_{\text{bad}}) \). But by \text{Lemma 6}, \(\beta(t_{\text{bad}}) \) is never invoked, so this case does not occur.

Case 4: \("t_{\text{bad}} = \text{Sign}(sk(N), M) \) with \(N \in \mathbf{NP}, M \in \mathbf{N} \)

Then \(\tau(m_{\text{bad}}) \) returns \(t_{\text{bad}} \) only if \(m_{\text{bad}} \) was not the output of an invocation of \(\beta \). In particular, \(m_{\text{bad}} \) was not produced by the signing oracle. Furthermore, \(\tau(m_{\text{bad}}) \) returns \(t_{\text{bad}} \) only if \(m_{\text{bad}} \) is a valid signature with respect to the verification key \(ek_N \). Hence \(m_{\text{bad}} \) is a valid signature that was not produced by the signing oracle. Such a bitstring \(m_{\text{bad}} \) can only be produced with negligible probability by \(E \) because of the strong existential unforgeability of \((\text{SKeyGen, Sig, Verify}) \) (implementation condition \text{20}).

Case 5: \("t_{\text{bad}} = ek(N) \) with \(N \in \mathbf{NP} ")

Then by \text{Lemma 6}, \(\beta(ek(N)) \) is never computed and hence \(ek_N \) never requested from the encryption oracle. Furthermore, from protocol conditions \text{3} and \text{2} we have that no term sent by \(\Pi^c \) contains \(dk(N) \), and all occurrences of \(N \) in terms sent by \(\Pi^c \) are of the form \(ek(N) \). Thus \(S \not\ni dk(N) \). Hence by \text{Lemma 6}, \(\beta(dk(N)) \) is never computed and \(dk_N \) is never requested from the encryption oracle. Furthermore, since \(S \not\ni ek(N) \), for all terms of the form \(t = E(ek(N), \ldots) \), we have that \(S \not\ni t \). Thus \(\beta(t) \) is never computed and hence no encryption using \(ek_N \) is ever requested from the encryption oracle. However, decryption queries with respect to \(dk_N \) may still be sent to the encryption oracle. Yet, by implementation condition \text{11} these will always fail unless the ciphertext to be decrypted already satisfies \(A_{ekof}(m) = ek_N \), i.e., if \(ek_N \) has already been guessed. Hence the probability that \(ek_N = m_{\text{bad}} \) occurs as input of \(\tau \) is negligible.

Case 6: \("t_{\text{bad}} = vk(N) \) with \(N \in \mathbf{NP} ")

Then by \text{Lemma 6}, \(\beta(vk(N)) \) is never computed and hence \(vk_N \) is never requested from the signing oracle. Furthermore, since \(S \not\ni vk(N) \), we also have \(S \not\ni sk(N) \) and \(S \not\ni t \) for \(t = \text{Sign}(sk(N), \ldots) \). Thus \(\beta(sk(N)) \) and \(\beta(t) \) never computed and hence neither \(sk_N \) nor a signature with respect to \(sk_N \) is requested from the signing oracle. Hence the probability that \(vk_N = m_{\text{bad}} \) occurs as output of \(\tau \) is negligible.

Summarizing, we have shown that if the simulator \(\text{Sim}_f \) is not DY, then with non-negligible probability \(\text{Sim}_f \) performs the computation \(\tau(m_{\text{bad}}) \), but \(m_{\text{bad}} \) can only occur with negligible probability as an argument of \(\tau \). Hence we have a contradiction to the assumption that \(\text{Sim}_f \) is not DY.

\textbf{Theorem 2} The implementation \(A \) (satisfying the implementation conditions given on page 16) is a computationally sound implementation of the symbolic model \(M \) (defined on page 14) for the class of key-safe protocols.
Proof. By Lemma 4, Sim\textsubscript{f} is DY for key-safe protocols. Whether a full trace satisfies the conditions from Definition 14 can be efficiently verified (since \(\vdash\) is efficiently decidable). Hence Lemma 3 implies that Sim is DY for key-safe protocol, too. By Lemma 4, Sim is indistinguishable. Hence Sim is a good simulator for M, key-safe \(\Pi\), A, and polynomials \(p\). By Theorem 1, the computational soundness of A for key-safe protocols follows.

4 Computational soundness of the applied \(\pi\)-calculus

In this section we show how to use CoSP to establish the first computational soundness result for the full-fledged applied \(\pi\)-calculus, including arbitrary equational theories, under active attacks. We consider the process calculus proposed in [BAF08] additionally augmented with events; the calculus in [BAF08] itself is a combination of the original applied \(\pi\)-calculus [AF01] with one of its dialects [Bla04]. This combination offers the richness of the original applied \(\pi\)-calculus while additionally being accessible to state-of-the-art verification tools such as ProVerif [Bla01]; in particular, we allow arbitrary equational theories. Our result hence yields computational soundness guarantees for ProVerif.

We first syntactically embed the applied \(\pi\)-calculus into CoSP. This embedding is particularly instructive because the applied \(\pi\)-calculus differs significantly from CoSP, e.g., the applied \(\pi\)-calculus models secrecy of nonces via restrictions, it does not rely on a labeled transition system, but it considers an equational theory. We then show that computational soundness of the embedding entails computational soundness of the applied \(\pi\)-calculus (in the sense of preservation of trace properties). Second, we provide a computational implementation of the embedding, and we prove it sound within CoSP.

4.1 Overview of this section

We first give a brief overview over the steps in our proof. This overview can be seen as a general guideline on how to embed other calculi into CoSP, and how to derive computational soundness guarantees for them.

First, we fix an (arbitrary) set of constructors and destructors for the applied \(\pi\)-calculus, as well as a computational implementation for these. These give rise to a symbolic model \(M\) and a computational implementation \(A\) in the sense of the CoSP framework. In the following, we assume that \(A\) is in fact a computationally sound implementation of \(M\).

Then we define a computational semantics of the applied \(\pi\)-calculus, called the computational \(\pi\)-execution, as well as trace properties in the applied \(\pi\)-calculus, called \(\pi\)-trace properties. This is only necessary since the applied \(\pi\)-calculus does not come with its own computational semantics; for calculi that already come with natural semantics for the computational case, this step is not necessary.

Then we define an alternative symbolic semantics of applied \(\pi\)-calculus, called the symbolic \(\pi\)-execution. The symbolic execution has the property that it is an exact analogue of the computational \(\pi\)-execution. That is, whenever the computational \(\pi\)-execution performs a certain operation on bitstrings (e.g., encrypting them or sending them to the symbolic adversary), the symbolic \(\pi\)-execution performs the analog symbolic operation on terms (e.g., applying the encryption-constructor or sending the terms to the symbolic adversary). We prove that the symbolic \(\pi\)-execution is equivalent to the original semantics of the applied \(\pi\)-calculus in the following sense: If a trace property is fulfilled in the original semantics, then it is also fulfilled in the symbolic \(\pi\)-execution.

Since the symbolic \(\pi\)-execution and the computational \(\pi\)-execution are exact analogues to each other, we can use the CoSP framework to prove computational soundness for the symbolic \(\pi\)-execution: We can express the symbolic execution of a process \(P_0\) as a CoSP protocol \(\Pi_{P_0}\). The
\(M, N \ ::= \text{terms} \)
\(x, y, z \ ::= \text{variables} \)
\(a, b, c \ ::= \text{names} \)
\(f(M_1, \ldots, M_n) \ ::= \text{constructor application} \)

\(D \ ::= \text{destructor terms} \)
\(M \ ::= \text{terms} \)
\(d(D_1, \ldots, D_n) \ ::= \text{destructor application} \)
\(f(D_1, \ldots, D_n) \ ::= \text{constructor application} \)

\(P, Q \ ::= \text{processes} \)
\(\overline{M} \langle N \rangle . P \ ::= \text{output} \)
\(M(x). P \ ::= \text{input} \)
\(0 \ ::= \text{nil} \)
\(P \mid Q \ ::= \text{parallel composition} \)
\(!P \ ::= \text{replication} \)
\(\nu a. P \ ::= \text{restriction} \)
\(\text{let } x = D \text{ in } P \text{ else } Q \ ::= \text{let} \)
\(\text{event}(e). P \ ::= \text{event} \)

Figure 3: Syntax of the applied \(\pi \)-calculus.

traces of the symbolic execution of \(\Pi_{P_0} \) are the same as the traces in the symbolic \(\pi \)-execution. Furthermore, since the computational \(\pi \)-execution results from replacing all symbolic operations in the symbolic \(\pi \)-execution by the corresponding computational operations, the computational execution of \(\Pi_{P_0} \) has the same traces as the computational \(\pi \)-execution.

Since \(A \) is a computationally sound implementation, we have that all trace properties that hold for the symbolic execution of \(\Pi_{P_0} \) also hold for the computational execution of \(\Pi_{P_0} \). Thus all trace properties that hold for the symbolic \(\pi \)-execution also hold for the computational \(\pi \)-execution. Altogether, then, we have that all trace properties that hold in the original semantics of the applied \(\pi \)-calculus also hold in the computational \(\pi \)-execution. In other words, we have computational soundness of the applied \(\pi \)-calculus.

4.2 Review of the calculus’ syntax and semantics

The syntax of the process calculus that we consider is provided in Figure 3. (We do not explicitly include an if-statement, but instead emulate it using destructor applications, see below.) Technically, it corresponds to the one considered in \cite{BAF08}, except that we add processes of the form \(\text{event}(e). P \) for a string \(e \). The intuitive meaning of such a process is that it raises an event \(e \) and then proceeds to execute \(P \). For brevity, in the following we call that variant of the applied \(\pi \)-calculus simply the applied \(\pi \)-calculus.

In the following, we often call terms in the applied \(\pi \)-calculus \(\pi \)-terms and terms in CoSP, i.e., in the sense of Section 2.2, CoSP-terms, in order to avoid ambiguities. We proceed similarly for other homonyms, such as \(\pi \)-constructors, \(\pi \)-traces, etc. The set of ground \(\pi \)-terms is denoted \(T_\pi \).
By \(fn(P) \) we denote the set of free names of \(P \), i.e., the names \(n \) not protected by a restriction. By \(fv(P) \) we denote the free variables of \(P \), i.e., the variables that are not protected by a let or an input. We call a process closed if it has no free variables (but it may have free names).

The applied calculus is parametrized over a (possibly infinite) set of \(\pi \)-constructors \(C_\pi \), a (possibly infinite) set of \(\pi \)-destructors \(D_\pi \) (such as the constructors and destructors from \(\text{Section 3} \)), and an arbitrary equivalence relation \(\approx \) over ground \(\pi \)-terms (describing, e.g., cancellations of certain terms). We call \(\approx \) the \emph{equational theory}. A destructor \(d \) of arity \(n \) is a partial function \(T^n \rightarrow T_\pi \). We require that the equational theory is compatible with the \(\pi \)-destructors and \(\pi \)-constructors in the following sense: For all \(\pi \)-constructors \(f \) and \(\pi \)-destructors \(d \) of arity \(n \), for all ground \(\pi \)-terms \(M_1, \ldots, M_n, M'_1, \ldots, M'_n \) with \(M_i \approx M'_i \) for \(i = 1, \ldots, n \), we have that \(f(M) \approx f(M') \), that \(d(M) = \bot \) iff \(d(M') = \bot \), and that \(d(M) \approx d(M') \). We also require \(d(\pi \tau) = d(\pi)\tau \) for any renaming \(\tau \) of names.

We did not explicitly include an if-statement in the syntax of the applied \(\pi \)-calculus since such a statement can be expressed using an additional destructor \emph{equals}: Let \(\text{equals}(x, y) = x \) for \(x \approx y \) and define if \(M = N \) then \(P \) else \(Q \) as let \(x = \text{equals}(M, N) \) in \(P \) else \(Q \) for some \(x \notin fv(P) \). In the following, we will assume \(\text{equals} \in D_\pi \). For further details, we write let \(x = D \) in \(P \) for let \(x = D \) in \(P \) else \(0 \) and analogously for if.

Given a ground destructor \(\pi \)-term \(D \), we can evaluate it to a ground \(\pi \)-term \(\text{eval}^\pi(D) \) by evaluating all \(\pi \)-destructors. If one of the \(\pi \)-destructors returns \(\bot \), we set \(\text{eval}^\pi(D) := \bot \). Analogously, we define \(\text{eval}^{\text{CoSP}}(D) \) for terms \(D \) involving CoSP-constructors, -constructors, and -nonces.

The semantics of the applied \(\pi \)-calculus is standard and corresponds to the one defined in \(\text{BaFoN} \) except for the addition of events. The semantics hence consists of two possible transitions: \(\rightarrow \) and \(\Leftarrow \). The latter denotes that the event \(e \) occurred, and we can define trace properties as properties over the sequence of events occurring in an execution of a process. Again, we prefix some notions with \(\pi \) to distinguish them from their corresponding notions in \(\text{Section 2.2} \). The semantics is formally defined in \text{Figure 4}.

Definition 17 (\(\pi \)-trace properties) A list of strings \(e_1, \ldots, e_n \) is an \emph{event trace} of \(P \) if there is a process \(Q \) that does not contain events such that \(P \mid Q \rightarrow^{*} e_1 \rightarrow^{*} e_2 \rightarrow^{*} \cdots \rightarrow^{*} e_n \). A \(\pi \)-trace property is an efficiently decidable and prefix-closed set of strings. A process \(P \) symbolically satisfies a \(\pi \)-trace property \(\varphi \) if we have \(e \in \varphi \) for all event traces \(e \) of \(P \).

4.3 Defining a computational execution

A computational \(\pi \)-implementation assigns a partial deterministic polynomial-time algorithm \(A^\pi_f \) to each \(\pi \)-constructor \(f \), and a partial deterministic polynomial-time algorithm \(A^\pi_d \) to each \(\pi \)-destructor \(d \). We also fix an efficiently sampleable set \(\text{Nonces}_k \) depending on a security parameter \(k \). We require that \(A^\pi_{\text{equal}}(1^k, x, x) = x \) and \(A^\pi_{\text{equal}}(1^k, x, y) = \bot \) for \(x \neq y \) (i.e., the computational interpretation of \(\approx \) is the equality of bitstrings). Given an assignment \(\mu \) from names to bitstrings and an assignment \(\eta \) from variables to bitstrings for names and variables occurring in a destructor term \(D \), we can (computationally) evaluate \(D \) to a bitstring \(\text{ceval}_{\eta, \mu}(D) \). (Formally, the security parameter \(k \) is an additional input to \(\text{ceval} \), but we omit \(k \) for readability.)

We set \(\text{ceval}_{\eta, \mu}(D) := \bot \) if the application of one of the algorithms \(A^\pi_f \) or \(A^\pi_d \) fails.

Given a computational implementation of the constructors and destructors, the computational execution of a process \(P \) is already determined, except for the question how to model nondeterminism and which messages the adversary is allowed to observe. To resolve the nondeterminism in the applied \(\pi \)-calculus, we let the adversary have total control over the scheduling. This is a worst-case assumption and thus leads to the strongest result. An alternative would, e.g., be a scheduling that uniformly chooses between different execution paths. Furthermore, we have to reflect that the applied \(\pi \)-calculus allows the adversary to receive messages on any channel in his
\[
\begin{align*}
\text{event}(e).P &\xrightarrow{e} P \\
P' \equiv P &\quad P \xrightarrow{e} Q &\quad Q \equiv Q' \\
\end{align*}
\]

Figure 4: Semantics of the applied \(\pi\)-calculus with events.

knowledge. For this, we allow the adversary to request a message on a channel if he can produce the bitstring corresponding to the channel’s name.

The computational implementation of a process is then defined using evaluation contexts: An evaluation context is a context with either one hole, or with two (distinguished) holes where each hole occurs only once and is located only below parallel compositions.\(^{6}\) In the case of two holes, we write \(E[P][Q] \) to denote the replacement of the first hole by \(P\) and of the second hole by \(Q\).

The computational \(\pi\)-execution of a process is now defined as an interactive machine that executes the process and communicates with an adversary. The computational \(\pi\)-execution maintains a process \(P\) representing the current process, an environment \(\eta\) storing the bitstrings assigned to the free variables in \(P\), and an interpretation \(\mu\) of the free names in \(P\) as bitstrings.

Definition 18 (Computational \(\pi\)-execution) Let \(P_0\) be a closed process, and let \(C\) be an interactive machine called the adversary. We define the computational \(\pi\)-execution as an interactive machine \(\text{Exec}_{P_0}(1^k)\) that takes a security parameter \(k\) as argument and interacts with \(C\):

- **Start:** Let \(P := P_0\) (where we rename all bound variables and names such that they are pairwise distinct and distinct from all unbound ones). Let \(\eta\) be a totally undefined partial function mapping variables to bitstrings, let \(\mu\) be a totally undefined partial function mapping

\(^{6}\)Traditionally, one considers evaluation contexts where the hole may also be protected by a restriction. However, computationally the evaluation of a restriction has to be considered a proper reduction step (it corresponds to choosing a nonce).
We will now derive the computational soundness of the applied π-calculus.

4.4 Computational soundness of the calculus

We will now derive the computational soundness of the applied π-calculus, i.e., we will show that if its computational implementation is computationally sound in the sense of Definition 11, then every symbolically satisfied π-trace property is also computationally satisfied. Applying

\[m \in S \quad N \in N_E \quad S \vdash M \quad f \in C \setminus N \]

\[S \vdash M \quad d \in D \quad d(M) \neq \bot \]

\[S \vdash d(M) \]

Figure 5: Deduction rules for the symbolic model of the applied π-calculus

names to bitstrings. Let \(a_1, \ldots, a_n \) denote the free names in \(P_0 \). For each \(i \), pick \(r_i \in \text{Nonces}_k \) at random. Set \(\mu := \mu(a_1 := r_1, \ldots, a_n := r_n) \). Send \((r_1, \ldots, r_n)\) to \(C \).\footnote{In the applied π-calculus, free names occurring in the initial process represent nonces that are honestly chosen but known to the attacker.}

• Main loop: Send \(P \) to the adversary and expect an evaluation context \(E \) from the adversary. Distinguish the following cases:
 - \(P = E[M(x).P_1] \): Request two bitstrings \(c, m \) from the adversary. If \(c = \text{ceval}_{\eta,\mu}(M) \), set \(\eta := \eta(x := m) \) and \(P := E[P_1] \).
 - \(P = E[\nu a.P_1] \): Pick \(r \in \text{Nonces}_k \) at random, set \(P := E[P_1] \) and \(\mu := \mu(a := r) \).
 - \(P = E[M_1(N).P_1[M_2(x).P_2]] \): If \(\text{ceval}_{\eta,\mu}(M_1) = \text{ceval}_{\eta,\mu}(M_2) \) then set \(P := E[P_1][P_2] \) and \(\eta := \eta(x := \text{ceval}_{\eta,\mu}(N)) \).
 - \(P = E[\text{let } x = D \text{ in } P_1 \text{ else } P_2] \): If \(m = \text{ceval}_{\eta,\mu}(D) \neq \bot \), set \(\eta := \eta(x := m) \) and \(P := E[P_1] \). Otherwise set \(P := E[P_2] \).
 - \(P = E[\text{event}(e).P_1] \): Let \(P := E[P_1] \) and raise the event \(e \).
 - \(P = E[!P_1] \): Rename all bound variables of \(P_1 \) such that they are pairwise distinct and distinct from all variables and names in \(P \) and in the domains of \(\eta \) and \(\mu \), yielding a process \(P_1 \). Set \(P := E[P_1] !P_1 \).
 - \(P = E[M(N).P_1] \): Request a bitstring \(c \) from the adversary. If \(c = \text{ceval}_{\eta,\mu}(M) \), set \(P := E[P_1] \) and send \(\text{ceval}_{\eta,\mu}(N) \) to the adversary.
 - In all other cases, do nothing.

The execution of \(\text{Exec}_{P_0}(1^k) \) maintains the invariant that all bound variables and names in \(P \) are pairwise distinct and that they are distinct from all variables and names in \(P \) and in the domains of \(\eta \) and \(\mu \). For a given polynomial-time interactive machine \(C \), a closed process \(P_0 \), and a polynomial \(p \), we let \(\text{Events}_{C,P_0,p}(k) \) the list of events \(e \) raised within the first \(p(k) \) computation steps (jointly counted for \(C(1^k) \) and \(\text{Exec}_{P_0}(1^k) \)).

We finally define the computational fulfillment of π-trace properties.

Definition 19 (Computational π-trace properties) Let \(P_0 \) be a closed process, and \(p \) a polynomial. We say that \(P_0 \) computationally satisfies a π-trace property \(\phi \) if for all polynomial-time interactive machines \(C \) and all polynomials \(p \), we have that \(\text{Pr}[\text{Events}_{C,P_0,p}(1^k) \in \phi] \) is overwhelming in \(k \).
Definition 11 first requires us to specify a symbolic model of the applied π-calculus (in the sense of Definition 3) and a computational implementation of this model (in the sense of Definition 8).

The symbolic model of the applied π-calculus contains all the π-constructors and π-destrokers from the applied π-calculus. We additionally add an infinite number of adversary nonces \(N_E \) and protocol nonces \(N_P \) to represent names. The deduction relation allows the adversary to derive all adversary nonces and everything derivable by application of constructors and destructors.

Definition 20 (Symbolic model of the applied π-calculus) For a π-destroyer \(d \), we define \(d' \) by \(d'(t) := d(t)\rho^{-1} \) where \(\rho \) is any injective map from the nonces occurring in the CoSP-terms \(t \) to names\(^8\). Let \(N_E \) and \(N_P \) be countably infinite sets.

The symbolic model of the applied π-calculus is given by \(M = (C, N, T, D, \vdash) \), where \(N := N_E \cup N_P \), \(C := C_{\pi} \), \(D := \{d' : d \in D_{\pi}\} \), and where \(\vdash \) consists of all terms over \(C \) and \(N \)\(^9\) and where \(\vdash \) is defined by the rules in Figure 5.

In the following, we fix \(M, C, N, D, \vdash \) as in Definition 20. The destructor equals’ induces an equivalence relation \(\equiv \) on the set of CoSP-terms with \(x \equiv y \) iff \(\text{equals}'(x, y) \neq \bot \). The relation \(\equiv \) is the analogue to the equivalence relation \(\approx \) describing the equational theory of the applied π-calculus.

The computational implementation of this symbolic model is now specified by the computational π-implementations \(A_f \) and \(A_d \) of the π-constructors and π-destroyers, with nonces being chosen uniformly at random.

Definition 21 (Computational implementation of Def. 20) The computational implementation \(A \) of the symbolic model \(M \) of the applied π-calculus is given by \(A_f := A_f^\pi \) for all \(f \in C \) and \(A_d := A_d^\pi \) for all \(d \in D \). \(A_N \) for \(N \in N \) picks \(r \in \text{Nonces}_k \) uniformly at random and returns \(r \).

In order to relate the symbolic and the computational semantics of a process, we define an additional symbolic execution for closed processes as a technical tool. This new semantics constitutes a safe approximation of the original semantics of the applied π-calculus while at the same time being a direct analogue of the computational semantics presented in Definition 18. The semantics is defined by means of an interactive nondeterministic machine \(\text{SExec}_{P_0} \), analogous to the machine \(\text{Exec}_{P_0} \) from Definition 18. Intuitively, the only difference between \(\text{Exec}_{P_0} \) and \(\text{SExec}_{P_0} \) is that the latter operates immediately on terms whenever the former operates on computational implementations of these terms.

In the following definition, note that for π-terms \(M \), we have that \(\text{eval}^{\text{CoSP}} M \eta \mu = M \eta \mu \) (this does not hold for destructor terms \(D \)). In these cases, we write the redundant \(\text{eval}^{\text{CoSP}} \) anyway to emphasize the analogy to Definition 18.

\(^8\)This is well-defined and independent of \(\rho \) since for any renaming of names \(\tau \), we have \(d(M\tau) = d(M)\tau \); intuitively \(d' \) behaves as \(d \) except that it uses nonces instead of names.

\(^9\)One can get a model with such a message type \(T \) using, e.g., Lemma 1.
Definition 22 (Symbolic execution of a \(\pi \)-process) Let \(P_0 \) be a closed process, and let \(C \) be an interactive machine called the adversary. We define the symbolic \(\pi \)-execution as an interactive machine \(\text{SEExec}_{P_0} \) that interacts with \(C \):

- **Start**: Let \(P := P_0 \) (where we rename all bound variables and names such that they are pairwise distinct and distinct from all unbound ones). Let \(\eta \) be a totally undefined partial function mapping variables to terms, let \(\mu \) be a totally undefined partial function mapping names to terms. Let \(a_1, \ldots, a_n \) denote the free names in \(P_0 \). For each \(i \), choose a different \(r_i \in \mathbb{N}_P \) Set \(\mu := \mu(a_1 := r_1, \ldots, a_n := r_n) \). Send \((r_1, \ldots, r_n)\) to \(C \).
- **Main loop**: Send \(P \) to the adversary and expect an evaluation context \(E \) from the adversary. Distinguish the following cases:
 - \(P = E[M(x).P_1] \): Request two CoSP-terms \(c, m \) from the adversary. If \(c \not\equiv \text{eval}^\text{CoSP}(M\eta\mu) \), set \(\eta := \eta(x := m) \) and \(P := E[P_1] \).
 - \(P = E[\nu a.P_1] \): Choose \(r \in \mathbb{N}_P \setminus \text{range} \mu \), set \(P := E[P_1] \) and \(\mu := \mu(a := r) \).
 - \(P = E[M_1(N).P_1][M_2(x).P_2] \): If \(\text{eval}^\text{CoSP}(M_1\eta\mu) \not\equiv \text{eval}^\text{CoSP}(M_2\eta\mu) \) then set \(P := E[P_1][P_2] \) and \(\eta := \eta(x := \text{eval}^\text{CoSP}(N\eta\mu)) \).
 - \(P = E[\text{let } x = D \text{ in } P_1 \text{ else } P_2] \): If \(m := \text{eval}^\text{CoSP}(D\eta\mu) \neq \perp \), set \(\eta := \eta(x := m) \) and \(P := E[P_1] \). Otherwise set \(P := E[P_2] \).
 - \(P = E[\text{event}(e).P_1] \): Let \(P := E[P_1] \) and raise the event \(e \).
 - \(P = E[\nu] \): Rename all bound variables of \(P_1 \) such that they are pairwise distinct and distinct from all variables and names in \(P \) and in the domains of \(\eta \) and \(\mu \), yielding a process \(P_1' \). Set \(P := E[P_1'] \).
 - \(P = E[M(N).P_1] \): Request a CoSP-term \(c \) from the adversary. If \(c \not\equiv \text{eval}^\text{CoSP}(M\eta\mu) \), set \(P := E[P_1] \) and send \(\text{eval}^\text{CoSP}(N\eta\mu) \) to the adversary.
 - In all other cases, do nothing.

The only differences between **Definition 18** and **Definition 22** are that the latter operates on CoSP-terms instead of bitstrings, it computes \(\text{eval}^\text{CoSP} X \eta\mu \) instead of \(\text{eval}_{\eta\mu} X \), it compares CoSP-terms using \(\equiv \) instead of checking for equality of bitstrings, and it chooses a fresh CoSP-nonce \(r \in \mathbb{N}_P \) instead of choosing a random bitstring \(r \) as value for a restricted name.

The interactive machine \(\text{SEExec}_{P_0} \) performs only the following operations on CoSP-terms: Applying CoSP-constructors (this includes nonces) and CoSP-destroiers, comparing using \(\equiv \) (which can be realized by an application of the destructor \(\text{equals}^\text{CoSP} \)), and sending and receiving terms. Hence this interactive machine can be realized as a CoSP protocol in the sense of **Definition 4**. The state of the machine \(\text{SEExec}_{P_0} \) is used as a node identifier. However, CoSP-terms are not encoded directly into the node identifier; instead, the node in which they were created (or received) is referenced instead.\(^{10}\)

\(^{10}\)For technical reasons, we do not reference the nodes by their identifiers, but instead by their indexes in the path from the root to the referring node. Otherwise, the size of node identifiers would grow exponentially.
lowing holds in an interaction with any interactive machine M in each step of the interaction: Let S be the set of all CoSP-terms sent by M up to the current step. Let m be the term sent by C in the current step. Then $S \vdash m$.

$S\text{Exec}_{P_0}$ satisfies a π-trace property φ if in a finite interaction with any Dolev-Yao adversary, the sequence of events raised by $S\text{Exec}_{P_0}$ is contained in φ.

Before we finally state and prove the soundness of the applied π-calculus, we provide three lemmas that are used to relate P_0, $S\text{Exec}_{P_0}$, Π_{P_0}, and the computational implementation A, and to assert the efficiency of the protocol Π_{P_0}. Figure 6 illustrates the use of these lemmas in the overall proof.

Lemma 8 Let φ be a trace property. Then $S\text{Exec}_{P_0}$ satisfies φ iff Π_{P_0} symbolically satisfies events$^{-1}(\varphi)$ (in the sense of Definition 10). Moreover, P_0 computationally satisfies φ iff (Π_{P_0}, A) computationally satisfies events$^{-1}(\varphi)$ (in the sense of Definition 10).

Proof. The symbolic case is immediate from the construction of Π_{P_0}. For the computational case, note the fact that the computational implementation of P_0 is defined like the symbolic one, except that it uses the implementations of the CoSP-constructors and CoSP-deststructors instead of the operating on abstractly on terms (and the implementation of $equals$ uses the identity on bitstrings).

Lemma 9 The probabilistic CoSP protocol Π_{P_0} is efficient.

Proof. By construction, there are efficient algorithms for computing the labels and successors of a node given its node identifier. It is left to show that the length of the node identifier of a node p is polynomial in the length of the path leading to that node. This is equivalent to showing that the state of $S\text{Exec}_{P_0}$ is of polynomial-length (when not counting the length of the representations of the CoSP-terms). For the variables η and μ, this is immediately satisfied because they grow by at most one entry in each activation of $S\text{Exec}_{P_0}$. To show that the length of P is polynomially bounded, note the following facts: In each activation of $S\text{Exec}_{P_0}$, P either gets smaller, or we have $P = E[|P_1|$ and P grows by the size of P_1. If $P = E[|P_1|$, then $|P_1|$ is a subterm of P_0 (up to renaming of names and variables). Hence in each activation, P grows at most by the size of P_0. Thus the size of P is linear in the number of activations of $S\text{Exec}_{P_0}$.

Lemma 10 If a closed process P_0 symbolically satisfies a π-trace property φ, then $S\text{Exec}_{P_0}$ satisfies φ.

Proof. To show this lemma, it is sufficient to show that if $S\text{Exec}_{P_0}$ raises events e_1, \ldots, e_n, then e is an event π-trace of P_0. Hence, for the following we fix an execution of $S\text{Exec}_{P_0}$ in interaction with a Dolev-Yao adversary E in which $S\text{Exec}_{P_0}$ raises the events e_1, \ldots, e_n. We then prove the lemma by constructing a process Q (that does not raise events) such that $Q \vdash P_0 \rightarrow^{e_1} \rightarrow^{e_2} \rightarrow^{e_3} \rightarrow^{\ldots} \rightarrow^{e_n} \rightarrow^*$.

For a given iteration of the main loop of $S\text{Exec}_{P_0}$, let P, η, μ denote the corresponding variables from the state of $S\text{Exec}_{P_0}$ at the beginning of that iteration. Let E denote the evaluation context chosen in that iteration. Let m be the domain of μ without the names r_1, \ldots, r_n sent in the message (r_1, \ldots, r_n) in the very beginning of the execution of $S\text{Exec}_{P_0}$. P', η', μ' are the corresponding values after that iteration. Let $fromadv$ be the list of terms received from the adversary in that iteration, and $toadv$ the list of terms sent to the adversary. By P_0, η_0, μ_0, m_0 we denote the corresponding values before the first iteration but after the sending of the message
(r_1, \ldots, r_n)[1]\) and by \(P, \eta, \mu, \bar{n}\), the values after the last iteration. We call a name or variable used if it occurs in the domain of \(\mu\) or \(\eta\), respectively. Note that \(\mu_0 = (a_1 \mapsto r_1, \ldots, a_n \mapsto r_n)\) where \(a\) are the free names in \(P_0\), but \(n_0 = \emptyset\). Note that \(P\) will never contain unused free variables or names.

Let \(S\) denote the list of all CoSP-terms output by SExec\(_P\), up to the current iteration. We encode \(S = (s_1, \ldots, s_n)\) as a substitution \(\varphi\) mapping \(x_i \mapsto s_i\) where \(x_i\) are arbitrary unused variables. We denote by \(S', \varphi'\) and \(S_0, \varphi_0\) and \(S_*, \varphi_*\) the values of \(S, \varphi\) after the current iteration, before the first iteration (but after sending \((r_1, \ldots, r_n)\)), and after the last iteration, respectively.

Note that \(S_0 = (r_1, \ldots, r_n)\).

Let \(\gamma\) be an injective partial function that maps every \(N \in \mathbb{N}_E\) to an unused name, and every \(N \in \text{range} \mu_*\) to \(\mu_*^{-1}(N)\). (This is possible because range \(\mu_* \subseteq \mathbb{N}_P\) and \(\mu_*\) is injective.) We additionally require that all unused names are in range \(\gamma\). (This is possible since both \(\mathbb{N}_E\) and the set of unused names are countably infinite.)

Note that for any \(\pi\)-destructor \(d\) and any \(\pi\)-terms \(M\) with \(fv(M) \subseteq \text{dom} \eta\) and \(fn(M) \subseteq \text{dom} \mu\), we have that \(M \varphi \mu\) are CoSP-terms and \(d'(M \varphi \mu) \gamma = d(M \varphi_{\mu} \gamma)\) (where \(d'\) is as in Definition 20). Hence for a destructor term \(D\) with \(fv(D) \subseteq \text{dom} \eta\) and \(fn(D) \subseteq \text{dom} \mu\), we have \(\text{eval}^{\text{CoSP}}(D \eta \mu) \gamma = \text{eval}^\pi(D \eta \mu)\gamma\). Since \(a_{\mu \gamma} = a\) for all names \(a \in \text{dom} \mu\), \(D \eta \mu \gamma = D \eta \gamma\). Since \(\text{eval}^{\text{CoSP}}(D \eta \mu)\) does not contain variables, \(\text{eval}^{\text{CoSP}}(D \eta \mu) \gamma = \text{eval}^{\text{CoSP}}(D \eta) \mu \gamma\). Thus for \(D\) with \(fv(D) \subseteq \text{dom} \eta\) and \(fn(D) \subseteq \text{dom} \mu\) we have

\[
\text{eval}^{\text{CoSP}}(D \eta \mu) \gamma = \text{eval}^\pi(D \eta) \gamma
\]

where the left hand side is defined iff the right hand side is.

Similarly to (2), if \(fv(D) \subseteq \text{dom} \varphi\) and \(fn(D) \subseteq \text{dom} \gamma^{-1}\), we have \(\text{eval}^{\text{CoSP}}(D \varphi \gamma^{-1}) \gamma = \text{eval}^\pi(D \varphi)\gamma\). For a CoSP-term \(t\) with \(S \vdash t\), from the definition of \(\vdash\) it follows that \(t = \text{eval}^{\text{CoSP}}(D \varphi \gamma^{-1})\) for some destructor \(\pi\)-term \(D\) containing only unused names and variables in \(\text{dom} \varphi\) (note that every \(N \in \mathbb{N}_E\) can be expressed as \(a\gamma^{-1}\) for some unused \(a\)). Since all unused names are in \(\text{dom} \gamma^{-1}\), we have

\[
t \gamma = \text{eval}^{\text{CoSP}}(D \varphi \gamma^{-1}) \gamma = \text{eval}^\pi(D \varphi)\gamma.
\]

Given two CoSP-terms \(t \equiv u\) such that \(t\) and \(u\) only contain nonces \(N \in \mathbb{N}_E \cup \text{range} \mu_*\), we have that \(\text{equals}(t, u) \neq \bot\) by definition of \(\equiv\). By definition of \(\text{equals}\) (Definition 20) and using that \(\gamma\) is injective and defined on \(\mathbb{N}_E \cup \text{range} \mu_*\), we have \(\text{equals}(t, u) = \text{equals}(t \gamma, u \gamma) \neq \bot\) and hence \(\text{equals}(t \gamma, u \gamma) \neq \bot\). Hence, for \(t\) only containing nonces \(N \in \mathbb{N}_E \cup \text{range} \mu_*\), we have

\[
t \equiv u \implies t \gamma \equiv u \gamma
\]

We call a process \(Q\) valid for \(\varphi\) if it does not contain events, all its free names are unused names, and all its free names are in the domain of \(\varphi\).

Claim: For all \(Q'\) valid for \(\varphi'\), there is a \(Q\) valid for \(\varphi\) such that \(\nu_{\mu}(Q \varphi|P \eta \gamma) \rightarrow \nu_{\mu'}(Q' \varphi'|P' \eta' \gamma)\). Here \(\rightarrow\) denotes \(e\) if an event \(e\) is raised in the current iteration, and \(\rightarrow^*\) otherwise.

Assuming that we have shown this claim, it follows that for all \(Q_*\) valid for \(\varphi_*\), there is a \(Q_0\) valid for \(\varphi_0\) such that \(\nu_{\mu_0}(Q_0 \varphi_0|P_0 \eta_0 \gamma) \rightarrow \nu_{\mu_0'}(Q_0' \varphi'|P_0' \eta' \gamma)\). Since \(\eta_0 = \emptyset\) and since \(P_0\) does not contain \(N \in \mathbb{N}\) (being a \(\pi\)-term) and since \(P_0\) is a renaming of \(P_0\), we have \(P_0 \eta_0 \gamma = \tilde{P}_0 \gamma = \tilde{P}_0 = \tilde{P}_0\). Then, with \(Q := Q_0 \varphi_0\gamma\) and using \(\eta_0 = \emptyset\) we have \(Q | P_0 = \nu_{\mu_0}(Q_0 \varphi_0 \gamma|P_0 \eta_0 \gamma) \rightarrow \nu_{\mu_0'}(Q_0' \varphi' \gamma|P_0 ' \eta' \gamma)\), since \(Q\) does not contain events, this implies that \(\varepsilon\) is an event \(\pi\)-trace of \(P_0\). This shows the lemma.

It is left to prove the claim. We distinguish the following cases:

\[\text{We use the variable name } \tilde{P}_0 \text{ because } \tilde{P}_0 \text{ is already used for the input of SExec}_{\tilde{P}_0}. \text{ Note however that } \tilde{P}_0 \equiv P_0.\]
• $P = E[M(x)P_1]$ and from $adv = (c, m)$ and $\text{eval}^{\text{CoSP}} M\eta\mu \cong e$: Then $P' = E[P_1]$ and $\varphi' = \varphi$ and $\eta' = \eta$ and $\eta'' = \eta(x := m)$. Furthermore, since SEexec_{P_1} interacts with a Dolev-Yao adversary, $S = (c, m)$. By Equation 3, there are destructor π-terms D_c, D_m containing only unused names and variables in $\text{dom} \varphi$ such that $c\gamma = \text{eval}^{\pi}(D_c\varphi\gamma)$ and $m\gamma = \text{eval}^{\pi}(D_m\varphi\gamma)$. Since a Dolev-Yao adversary will never derive protocol nonces that have never been sent, we have that only nonces $N \in N_C \cup \text{range} \mu$ occur in c and in $M\eta\mu$. Hence with \cite{3}, from $M\eta\mu = \text{eval}^{\text{CoSP}} M\eta\mu \cong e$ it follows that $M\eta\gamma = M\eta\mu \eta \gamma \approx c\gamma$. Pick some $y, z \not\in \text{fv}(Q') \cup \text{dom} \varphi'$. Let $Q := (let \ y = D_c in \ let \ z = D_m in \ \gamma(y), Q')$. Then $Q\varphi\gamma \rightarrow^* \pi\gamma(m\gamma), Q'\varphi'\gamma$. Then

$$
Q\varphi\gamma \mid P\eta\gamma = \nu^\varphi_2(Q\varphi\gamma \mid (E\eta\gamma)[M\eta\gamma(x)P_1\eta\gamma]) \rightarrow^* \pi\gamma(m\gamma), Q'\varphi'\gamma \mid (E\eta\gamma)[M\eta\gamma(x)P_1\eta\gamma] \\
\rightarrow Q'\varphi'\gamma \mid (E\eta\gamma)[P_1\eta\gamma(m\gamma/x)].
$$

Since we maintain the invariant that all bound variables in P are distinct from all other variables in P or $\text{dom} \eta$, we have $x \notin \text{fv}(E)$ and $x \notin \text{dom} \eta$. Hence $E\eta\gamma = E\eta\gamma$ and $P_1\eta\gamma = P_1\eta\gamma(m/x)\gamma = P_1\eta\gamma$. Furthermore since $\varphi = \varphi'$ we have $Q\varphi\gamma = Q'\varphi'\gamma$. Thus $Q'\varphi'\gamma \mid (E\eta\gamma)[P_1\eta\gamma(m\gamma/x)] = Q'\varphi'\gamma \mid (E\eta\gamma)[P_1\eta\gamma] = Q'\varphi'\gamma \mid P'\eta\gamma$. Hence $Q'\varphi'\gamma \mid P'\eta\gamma$ and with $\eta = \eta'$ we have $\nu^\varphi_2(Q\varphi\gamma \mid P\eta\gamma) \rightarrow^* \nu^\varphi_2(Q'\varphi'\gamma \mid P'\eta\gamma)$. Since Q' is valid and $\text{fn}(D_c, D_m) \subseteq \text{dom} \varphi$, we have that Q is valid.

• $P = E[v\alpha.P_3]$; Then $P' = E[P_3]$, $\varphi' = \varphi$, $\eta = \eta'$, and $\eta'' = \eta''\|a$ for some $r \in N_\eta \setminus \text{range} \mu$, and $\mu' = \mu(a := r)$. Since $a \in \text{dom} \mu' \subseteq \text{dom} \mu$, a is used. Since Q' is valid for φ', this implies $a \notin \text{fn}(Q')$. Set $Q := Q'$. Then Q is valid for $\varphi = \varphi'$. Since we maintain the invariant that all bound names in P are pairwise distinct and distinct from all other names in P or $\text{dom} \mu$, we have $a \notin \text{fn}(E)$ and $a \notin \eta$. Furthermore, by the same invariant, we have $a \notin \text{dom} \eta$. Note that the execution of SEexec_{P_1} also maintains the following invariant: Any nonce $N \in N_\eta \setminus \text{range} \mu$ occurring (as a subterm) in the range of η or φ is also in the range of μ. (This uses the fact that the Dolev-Yao adversary cannot derive protocol nonces that have never been sent.) Hence $r \in N_\eta \setminus \text{range} \mu$ does not occur in the range of η or φ. Since $\mu'(a) = r$, $\gamma(r) = a \in \text{dom} \gamma$ and hence using the injectivity of γ, for $N \neq r$ we have $\gamma(N) \neq a$. Thus for all variables $x, x\gamma$ and $x\gamma$ do not contain a, and hence $a \notin \text{fn}(Q\varphi\gamma) \cup \text{fn}(E\eta\gamma)$. Together with $r \notin \eta$ we get $\nu^\varphi_2(Q\varphi\gamma \mid P\eta\gamma) = \nu^\varphi_2(Q\varphi\gamma \mid (E\eta\gamma)[v\alpha.P_3\eta\gamma]) \equiv \nu^\varphi_2.\nu^\varphi_2(Q\varphi\gamma \mid (E\eta\gamma)[P_1\eta\gamma]) = \nu^\varphi_2.(Q'\varphi'\gamma \mid (E\eta\gamma)[P_1\eta\gamma]).$

• $P = E[M_1\eta\gamma(x).P_1][M_2(x).P_2]$ with $\text{eval}^{\text{CoSP}} M_1\eta\mu \cong \text{eval}^{\text{CoSP}} M_2\eta\mu$: Then $P' = E[P_1][P_2]$ and $\eta'' = \eta$ and $\varphi' = \varphi$ and $\eta'' = \eta(x := t)$ with $t := \text{eval}^{\text{CoSP}} N\eta\mu$. Since we maintain the invariant that all bound variables in P are distinct from all other variables in P or $\text{dom} \eta$, we have $x \notin \text{fn}(E) \cup \text{fn}(P_1)$ and $x \notin \text{dom} \eta$. Hence $E\eta\gamma = E\eta\gamma$ and $P_1\eta\gamma = P_1\eta\gamma$. Furthermore, we have $P_2\eta\gamma(N\eta\gamma/x) = P_2\eta\gamma(N\eta\mu/x) = P_2\eta\gamma(t/x)\gamma = P_2\eta\gamma$. Since a Dolev-Yao adversary will never derive protocol nonces that have never been sent, we have that only nonces $N \in N_\eta \cup \text{range} \mu$ occur in $M_1\eta\mu$ and $M_2\eta\mu$. With $M_1\eta\mu = \text{eval}^{\text{CoSP}} M_1\eta\mu \cong \text{eval}^{\text{CoSP}} M_2\eta\mu$ and \cite{4} we get $M_1\eta\gamma = M_1\eta\mu \eta \gamma \approx M_2\eta\mu \gamma = M_2\eta\gamma$. Hence with $Q := Q'$, we have

$$
\nu^\varphi_2(Q\varphi\gamma \mid P\eta\gamma) = \nu^\varphi_2(Q\varphi\gamma \mid (E\eta\gamma)[M_1\eta\gamma(x).P_1\eta\gamma][M_2\eta\gamma(x).P_2\eta\gamma]) \\
\rightarrow \nu^\varphi_2(Q\varphi\gamma \mid (E\eta\gamma)[P_1\eta\gamma[N\eta\gamma/x]]) \\
= \nu^\varphi_2.(Q'\varphi'\gamma \mid (E\eta\gamma)[P_1\eta\gamma][P_2\eta\gamma]) \\
= \nu^\varphi_2.(Q'\varphi' \mid P'\eta\gamma).
$$
Since Q' is valid for $\varphi' = \varphi$, $Q = Q'$ is valid for φ.

- $P = E[\{x = D \text{ in } P_1 \text{ else } P_2\}]$ and $\text{eval}^{\text{CoSP}}(D\eta\mu) = \bot$: Then $P' = E[P_1]$ and $\varphi' = \varphi$, and $n' = n$ and $\eta' = \eta$. Set $Q := Q'$. Then Q is valid for $\varphi = \varphi'$. By (2), $\text{eval}^\pi(D\eta\gamma) = \bot$. Hence

$$
\nu_2.(Q\varphi_{\gamma} \mid P\eta\gamma)
\Rightarrow \nu_2.(Q\varphi_{\gamma} \mid (E\eta\gamma)[\{x = D\eta\gamma \text{ in } \ldots \text{ else } P_2\eta\gamma\}])
\Rightarrow \nu_2.(Q\varphi_{\gamma} \mid (E\eta\gamma)[P_2\eta\gamma])
\Rightarrow \nu_2'.(Q'\varphi'_{\gamma} \mid P'\eta'\gamma).
$$

- $P = E[\{x = D \text{ in } P_1 \text{ else } P_2\}]$ and $\text{eval}^{\text{CoSP}}(D\eta\mu) \neq \bot$: Then $P' = E[P_1]$ and $\varphi' = \varphi$ and $n' = n$ and $\eta' = \eta(x := \text{eval}^{\text{CoSP}}(D\eta\mu))$. Set $Q := Q'$. Then Q is valid for $\varphi = \varphi'$. By (2), $t := \text{eval}^\pi(D\eta\gamma) = \text{eval}^{\text{CoSP}}(D\eta\mu)\eta\gamma \neq \bot$. Since we maintain the invariant that all bound variables in P are distinct from all other variables in P or $\text{dom} \eta$, we have $x \notin \text{fv}(E)$ and $x \notin \text{dom} \eta$. Hence $P\eta\gamma = (E\eta\gamma)[\{x = D\eta\gamma \text{ in } P_1\eta\gamma \text{ else } \ldots \}] \Rightarrow (E\eta\gamma)[P_1\eta\gamma\{x/t\}]$.

Furthermore, $P_1\eta\gamma\{t/x\} = P_1\eta\gamma[\text{eval}^{\text{CoSP}}(D\eta\mu)\gamma/x] = P_1[\text{eval}^{\text{CoSP}}(D\eta\mu)/x]\gamma = P_1\eta'\gamma$. Since $x \notin \text{fv}(E)$, $(E\eta\gamma)[P_1\eta'\gamma] = E[P_1]t'\eta'\gamma = P'\eta'\gamma$. Hence $P\eta\gamma \Rightarrow P'\eta'\gamma$. Since $Q = Q'$, $\varphi = \varphi'$, and $n = n'$, it follows that $\nu_2.(Q\varphi_{\gamma} \mid P\eta\gamma) \Rightarrow \nu_2'.(Q'\varphi'_{\gamma} \mid P'\eta'\gamma)$.

- $P = E[\text{event}(e), P_1]$: Then $P' = E[P_1]$ and $\varphi' = \varphi$ and $n' = n$ and $\eta' = \eta$ and the event e is raised. Let $Q := Q'$. Then Q is valid for φ. We have $\nu_2.(Q\varphi_{\gamma} \mid P\eta\gamma) = \nu_2.(Q\varphi_{\gamma} \mid (E\eta\gamma)[\text{event}(e), P_1\eta\gamma]) \Rightarrow \nu_2.(Q\varphi_{\gamma} \mid (E\eta\gamma)[P_1\eta\gamma]) = \nu_2'.(Q'\varphi'_{\gamma} \mid P'\eta'\gamma)$.

- $P = E[P_1]$; Then $P' = E[P_1 \mid \tilde{P}_1]$ for some $\tilde{P}_1 \equiv P_1$ and $\varphi' = \varphi$ and $n' = n$ and $\eta' = \eta$. Set $Q := Q'$. Then Q is valid for $\varphi = \varphi'$. Hence

$$
\nu_2.(Q\varphi_{\gamma} \mid P\eta\gamma)
\Rightarrow \nu_2.(Q\varphi_{\gamma} \mid (E\eta\gamma)[P_1\eta\gamma])
\Rightarrow \nu_2.(Q\varphi_{\gamma} \mid (E\eta\gamma)[P_1\eta\gamma \mid P_1\eta\gamma])
\Rightarrow \nu_2'.(Q'\varphi'_{\gamma} \mid P'\eta'\gamma).
$$

- $P = E[\overline{M}(N), P_1]$ with $t_M' := \text{fromadv} \cong t_M$ and $\text{todev} = t_N$ where $t_M := \text{eval}^{\text{CoSP}} M\eta\mu$ and $t_N := \text{eval}^{\text{CoSP}} N\eta\mu$: Then $P' = E[P_1]$ and $S' = S[t_N]$. Since $\varphi' = \varphi(x_{n+1} := t_N)$ where $x_{n+1} \notin \text{dom} \varphi$. Since t_M was sent by the adversary, $S' \neq t_M'$. By (3), there is a destructor π-term D_M containing only unused names and variables in φ such that $t_M' \gamma = \text{eval}^\pi(D_M\varphi_{\gamma})$.

Since a Dolev-Yao adversary will never derive protocol nonces that have never been sent, we have that only nonces $N \in N\in E \cup \text{range} \mu$ occur in t'_M and $M\eta\mu$. Hence with (4), from $t'_M \cong t_M$ it follows that $M\eta\gamma = M\mu\varphi = t_M' \gamma \approx t_M' \gamma$. Pick $y \notin \text{fv}(Q') \cup \text{dom} \varphi'$. Let $Q := \text{let } y = D_M \text{ in } y(x_{n+1}, Q')$. Then $Q' \varphi_{\gamma} \rightarrow t_M' \gamma(x_{n+1}, Q'\varphi_{\gamma})$. Then

$$
Q' \varphi_{\gamma} \mid P\eta\gamma = Q' \varphi_{\gamma} \mid (E\eta\gamma)[\overline{M}\overline{\eta\gamma}(N\eta\gamma), P_1\eta\gamma]
\Rightarrow Q' \varphi_{\gamma}(x_{n+1}, Q' \varphi_{\gamma} \mid (E\eta\gamma)[\overline{M}\overline{\eta\gamma}(N\eta\gamma), P_1\eta\gamma]
\Rightarrow Q' \varphi_{\gamma}(N\eta\gamma/x_{n+1}) \mid (E\eta\gamma)[P_1\eta\gamma]
\Rightarrow Q' \varphi_{\gamma}(N\eta\gamma/x_{n+1}) \mid (E\eta\gamma)[M\eta\gamma, P_1\eta\gamma]
\Rightarrow Q' \varphi_{\gamma}(N\eta\gamma/x_{n+1}) \mid P'\eta\gamma.
$$

Since $x_{n+1} \notin \text{dom} \varphi$, $Q' \varphi_{\gamma}(N\eta\gamma/x_{n+1}) \gamma = Q' \varphi'_{\gamma} \gamma$. Hence $Q' \varphi_{\gamma} \mid P\eta\gamma \Rightarrow Q' \varphi'_{\gamma} \mid P'\eta'\gamma$. Since $n = n'$ we have $\nu_2.(Q' \varphi_{\gamma} \mid P\eta\gamma) \Rightarrow \nu_2'.(Q' \varphi_{\gamma} \mid P'\eta'\gamma)$.
Since Q' is valid, Q does not contain events, and its free names are unused names, and $\text{fv}(Q) \subseteq \text{dom} \varphi' = \text{dom} \varphi \cup \{x_{n+1}\}$. Since x_{n+1} is bound on top level in Q, $x_{n+1} \notin \text{fv}(Q)$, thus $\text{fv}(Q) \subseteq \text{dom} \varphi$. Hence Q is valid.

- In all other cases we have $P = P'$, $\varphi = \varphi'$, $\eta = \eta'$, and $\nu = \nu'$. Hence with $Q := Q'$, we have $\nu_{\overline{w}}(Q\varphi' | P\eta') = \nu_{\overline{w}}'(Q'\varphi' | P'\eta')$.

With these lemmas at hand, we are finally ready to state and prove the computational soundness of the applied π-calculus as the main result of this section.

Theorem 3 (Comp. soundness in the applied π-calculus) Assume that the computational implementation of the applied π-calculus (Definition 21) is a computationally sound implementation (in the sense of Definition 17) of the symbolic model of the applied π-calculus (Definition 20) for a class P of protocols.

If a closed process P_0 symbolically satisfies a π-trace property φ, and $\Pi_{P_0} \in P$, then P_0 computationally satisfies φ.

Proof. Assume that P_0 symbolically satisfies φ. By Lemma 10 SEexec_{P_0} satisfies φ. By Lemma 8 Π_{P_0} symbolically satisfies $\text{events}^{-1}(\varphi)$. Furthermore, since φ is an efficiently decidable, prefix closed set, so is $\text{events}^{-1}(\varphi)$. So $\text{events}^{-1}(\varphi)$ is a CoSP-trace property in the sense of Definition 10. From Lemma 9 we have that Π_{P_0} is an efficient protocol. By assumption, the computational implementation A of the applied π-calculus is computationally sound; hence (Π_{P_0}, A) computationally satisfies $\text{events}^{-1}(\varphi)$. Using Lemma 8 we obtain that P_0 computationally satisfies φ. \qed

4.5 Computationally sound encryption and signatures in the applied π-calculus

Consider an instantiation of the applied π-calculus with the constructors and destructors described in Section 3. Assume an implementation A of the constructors or destructors satisfying the implementation conditions given on page 16 in Section 3.

We call a process P key-safe if it has the following grammar: Let x, x_d, k_s stand for different sets of names (general purpose, decryption key, and signing key variables). Let a and r stand for two sets of names (general purpose and randomness names). Then the allowed terms are $\overline{M}, \overline{N} := x | a | \text{pair}(\overline{M}, \overline{N}) | \overline{S}$ with $\overline{S} := \text{string}_0(\overline{S}) | \text{string}_1(\overline{S}) | \text{empty}$, the allowed destructor terms are $\overline{D} := \overline{M} | \text{isek}(\overline{D}) | \text{isenc}(\overline{D}) | D(x_d, \overline{D}) | \text{fst}(\overline{D}) | \text{snd}(\overline{D}) | \text{ekof}(\overline{D}) | \text{equals}(\overline{D}, \overline{D}) | \text{isek}(\overline{D}) | \text{issig}(\overline{D}) | \text{verify}(\overline{D}, \overline{D}) | \text{vkof}(\overline{D}) | \text{unstring}_0(\overline{D}) | \text{unstring}_1(\overline{D})$. The allowed processes are

\[
\begin{align*}
\overline{P}, \overline{Q} & := \overline{M}(\overline{N}).\overline{P} | \overline{M}(x).\overline{P} | 0 | (\overline{P} | \overline{Q}) | !\overline{P} | !\nu.a.\overline{P} | \\
& \quad \text{let } x = \overline{D} \text{ in } \overline{P} \text{ else } \overline{Q} | \text{event}(e).\overline{P} | \\
& \quad \nu r.\text{let } x = \text{ek}(r) \text{ in let } x_d = \text{dk}(r) \text{ in } \overline{P} | \\
& \quad \nu r.\text{let } x = \text{E}(\text{isek}(\overline{D}_1), \overline{D}_2, r) \text{ in } \overline{P} \text{ else } \overline{Q} | \\
& \quad \nu r.\text{let } x = \text{vk}(r) \text{ in let } x_s = \text{sk}(r) \text{ in } \overline{P} | \\
& \quad \nu r.\text{let } x = \text{sig}(x_s, \overline{D}_1, r) \text{ in } \overline{P} \text{ else } \overline{Q}
\end{align*}
\]

(Note that in the last four production rules for key generation and for encryption, all occurrences of r denote the same name.)

Theorem 4 If a closed key-safe process P_0 symbolically satisfies a π-trace property φ, then P_0 computationally satisfies φ.

40
We model the participants of Needham-Schroeder-Lowe. The Needham-Schroeder-Lowe protocol can be written as follows in the applied π-calculus (we use syntactic sugar (x,y) for $\mathit{pair}(x,y)$):

\[
\begin{align*}
A &::= \!\text{net}(ek_X). \\
 &\quad \text{if } ek_X = ek_B \text{ then event(beginAB).} A' \text{ else } A' \\
A' &::= \nu_{\!\!\text{ml}(n_A)}(c). \text{let } m = D(dk_A, c) \text{ in } \\
 &\quad \text{if } n_A = \text{fst}(m) \text{ then if } ek_X = \text{snd}(\text{snd}(m)) \text{ then } \nu_{r_1}. \text{let } c' = E(isek(ek_X), \text{fst}(\text{snd}(m)), r_2) \text{ in } \\
 &\quad \quad \text{net}(c').0 \\
B &::= \!\text{net}(ek_X).\text{net}(n_B). \nu_{n_B}. \\
 &\quad \nu_{r_1}. \text{let } c = E(isek(ek_X), (n_A, (n_B, ek_B)), r_1) \text{ in } \\
 &\quad \quad \text{net}(c). \text{net}(m). \text{if } n_B = D(dk_B, m) \text{ then } \\
 &\quad \quad \quad \text{if } ek_X = ek_A \text{ then event(endAB)} \\
P &::= \nu_{\!\!\text{ml}(r_A)}. \text{let } ek_A = dk(r_A) \text{ in let } dk_A = dk(r_A) \text{ in } \text{net}(ek_A). \\
 &\quad \nu_{\!\!\text{ml}(r_B)}. \text{let } ek_B = dk(r_B) \text{ in let } dk_B = dk(r_B) \text{ in } \text{net}(ek_B). \\
 &\quad (A \mid B).
\end{align*}
\]

We model the participants A and B as processes with an unbounded number of sessions that perform authentications with arbitrary participants (the adversary may control with which communication partner an authentication is performed by sending a public key ek_X over the public channel net). If A believes to perform an authentication with B ($ek_X = ek_B$), it raises the event beginAB. If B believes to have completed an authentication with A, it raises the event endAB. Entity authentication can be expressed by requiring that every endAB event is preceded by a beginAB event. The process P describing the whole protocol is an encryption-safe process (if r_1, r_2, r_A, r_B are declared as randomness names and dk_A, dk_B as secret key variables).

We can encode the processes and the equational theory in ProVerif as shown in Figure 7. Note that we moved νr_2 in A' up in front of the input net(c). Obviously, this leads to an equivalent process (in terms of event traces), but it helps ProVerif to terminate.\footnote{In general, when ProVerif does not terminate, it is helpful to move all restrictions upwards as far as possible.} ProVerif verifies the entity authentication property with no noticeable delay.

Figure 7: Needham-Schroeder-Lowe in ProVerif syntax

Proof. Let Π_{P_0} be the protocol corresponding to SEexec_{P_0} (as in Section 4). From the definition of key-safe processes, it is easy to see that Π_{P_0} is a key-safe CoSP protocol.

By assumption, A satisfies the implementation conditions given on page 16 in Section 3. Hence by Theorem 2, A is a computationally sound implementation of the symbolic model $M = (C, N, T, D, \vdash)$ defined on page 14 for the class P of key-safe CoSP protocols and hence in particular for the CoSP protocol Π_{P_0}.

Let $M' = (C, N, T', D, \vdash')$ where T' is the set of all terms over $C \cup D$ and \vdash' is the reduction relation defined by the rules in Figure 5.

From the definition of key-safe processes, it is easy to see that Π_{P_0} is T-conform in the sense of Lemma 1. Hence, by Lemma 1, A is a computationally sound implementation of the symbolic model M' for the protocol Π_{P_0}. By Theorem 3 it follows that if P_0 symbolically satisfies \varnothing, then P_0 computationally satisfies \varnothing.\hfill \square

Analysis of Needham-Schroeder-Lowe. The Needham-Schroeder-Lowe protocol can be written as follows in the applied π-calculus (we use syntactic sugar (x,y) for $\mathit{pair}(x,y)$):
5 Conclusion and future work

We have described CoSP, a general framework for conducting computational soundness proofs of symbolic models and for embedding these proofs into formal calculi. CoSP considers arbitrary equational theories and computational implementations, and it abstracts away many details that are not crucial for proving computational soundness, such as message scheduling, corruption models, and even the internal structure of a protocol. CoSP enables soundness results, in the sense of preservation of trace properties, to be proven in a conceptually modular and generic way: proving x cryptographic primitives sound for y calculi only requires $x + y$ proofs, and the process of embedding calculi is conceptually decoupled from computational soundness proofs of cryptographic primitives.

We have shown how to use CoSP to establish the first computational soundness result for the full-fledged applied π-calculus under active attacks, by embedding the calculus into CoSP and by particularly providing a sound implementation of public-key encryption and digital signatures.

CoSP currently only considers computational soundness in the sense of preservation of trace properties. We plan to leverage existing definitions of the preservation of more sophisticated properties such as static or observational equivalence [KM07, CLC08] into CoSP. Moreover, we plan to derive the computational soundness of additional calculi, especially those ones that strive for analyzing security protocols in more realistic settings. Calculi for reasoning about implementations of security protocols such as RCF [BBF08] are hence particularly promising targets for this future work.

Acknowledgements. We thank Hubert Comon-Lundh, Ankit Malik, Matteo Maffei, Esfandiar Mohammadi, and Bogdan Warinschi for valuable discussions. We also thank the anonymous reviewers for helpful and constructive comments.

References

