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1 Special Hardware for Factoring Algorithms

Algorithms to factor large integers usually split into to main steps:

• Sieving (time consuming)

• Solving a large system of linear equations (memory consuming)

To speed up the the sieving step Shamir has proposed a quite simple special hardware
(TWINKLE). [13]

This approach with blinking LEDs is not reasonable for larger numbers, but was extended to
an electronic version TWIRL a few years later. [14]

These two designs should be presented in one talk of the seminar

2 Cryptanalysis of the Tillich–Zémor Hash Function

Tillich and Zémor proposed a hash function with very nice properties, e.g. it can be calcu-
lated in parallel. It is based on 2 × 2 matrices with determinant 1 over a finite field with 2n

elements.

The algebraic properties of the hash function not only allow for parallel evaluation, but allow
different attacks. A few weaknesses have been found quite early. Then, in 2011 the hash
function was completely broken e.g. by constucting collisions. [6]

In the seminar talk, the hash function and its properties and the main idea of the attack
should be presented.

3 Cryptanalysis of Polly Cracker

Quantum computers are a thread to crypto systems based on the factoring or dLog problem.
Thus ideas for new „difficult problems“ and cryptosystems based on theses problems came
up - even more than 20 years ago.



One of theses difficult problems is based on finding a Groebner-Basis of an Ideal in a mul-
tivariate polynomial ring. This crypto system can easily be broken by a chosen plaintext
attack. [15]

With a bit more algebraic background, even the follow up system POLLY Two can be broken
with a ciphertext-only attack. [16]

These two crypto systems and the two attacks should be presented in one talk of the semi-
nar.

4 Primality Testing

The research on prime numbers has always been very active. Today, prime numbers are
used in many applications, especially in the field of cryptography. Thus, the security is
based on the difficulty of decomposing large numbers into prime factors via cryptographic
systems, such as the public key RSA encryption.
Of all primality testing algorithms published over time, the one of Agrawal, Kayal and Saxena
is the only one that combines the three fundamental criteria: deterministic, unconditional
and in polynomial time. AKS is an algorithm puplished in 2002, which is able to prove in
polynomial time the primality of a number without any hypothesis.
In this seminar we show the functionality of AKS in comparison with other primality tests,
e.g. Miller-Rabin and Trial Division. In addition, we give an impression of the practicability of
these tests. [11]

5 Pollard’s Factorization Algorithms

Factorization is a basic tool to attack RSA encryption. With the understanding of primality,
we will analyze two factorization methods given by Pollard.
The first one is Pollard’s ρ-Algorithm, which is a fast integer factorization algorithm. After
illimination all small factors, this algorithms outputs a non-trivial factor. [9]
The second one is Pollard’s (p − 1)-Algorithm, which is an algebraic-group factorization al-
gorithm based on Fermat’s little theorem. The last algorithm underlines the usage of safe
primes in cryptography. [10]
As a result we will see how to choose parameters of RSA to be secure against Pollard’s
factorization algorithms.

6 Elliptic Curve Primality Proving

Using safe primes in cryptography does not provide an advantage anymore since elliptic
curve factorization is equally efficient for safe primes and non-safe primes. With the concept
of using elliptic curve in factorization, primality testing (and proving) via elliptic curves are
developped and still widely used these days.
In this seminar, we explain the Atkin-Morain elliptic curve primality test to give a quickly
verifiable certificate for primality or compositeness. [1]



7 Lattice Reduction (in Cryptanalysis)

The use of lattice reduction in cryptanalysis extends over attacks on lattice-based schemes
to a useful tool to attack a broad range of cryptosystems that can be generalized or extended
to a lattice problem. In that sense the lattice reduction may be used as (efficient) shortest
vector oracle in the subroutine of an attack, e.g., to solve short integer relations. In this
seminar topic we review lattice reduction to attack some of the following schemes: Knapsack
cryptosystems, RSA, Mersenne number cryptosystems. [8] [7, Chapter 10, 13] [12, 2]

8 Decryption Failures

Many post-quantum schemes build on hiding information in artificial errors, e.g. code-based
systems such as the McEliece Cryptosystem or lattice-based schemes building on the short-
est vector problem. Information is hidden by encoding a valid message in the respective
domain and adding an artificial but random error. Due to the artificial error the encoded
message appears to be random for a passive attacker.

The use of artificial errors results in a low probability that a honestly generated ciphertext fails
to decrypt successfully and the communicating parties fail to exchange a shared secret. The
ciphertexts is dependent on the secret inputs of both parties and thus contains information
about the later. A decryption failures may thus leak such information to an adversary allowing
him to recover in example the secret key. [5, 3]

9 Timing Attacks on Error Correcting Codes

Many post-quantum schemes build on hiding information in artificial errors, e.g. code-based
systems such as the McEliece Cryptosystem or lattice-based schemes building on the short-
est vector problem. Information is hidden by encoding a valid message in the respective
domain and adding an artificial but random error. Due to the artificial error the encoded
message appears to be random for a passive attacker.
In the case of cryptographic protocols building on the shortest vector problem error correct-
ing codes are used to derive shared secret based on noisy information exchanged between
communicating parties. These approaches may lead to new implementation vulnerabilities,
such as timing attacks on error correcting codes. In this seminar topic the student should
understand how decryption timings of error correcting codes can be exploited to extract in-
formation about secrets keys. [4]
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