Verifiable random oracles
Master’s Thesis

The random oracle model (ROM) is a widely used in heuristic in practice. But replacing a random oracle with a hash function does in general not preserve the security, hence the heuristic is flawed. Implementing the ROM via trusted party is possible, but makes protocols interactive.

This thesis considers a new model, the VROM. Verifiable random oracles extends random oracles by also providing a “proof of correct evaluation”. That is, VRO consists of two algorithms:

- \(\text{VRO.Hash}(m) = (h, \pi) \), where \(h \) is the hash and \(\pi \) is the “proof”.
- \(\text{VRO.VfyHash}(m, h, \pi) \) checks whether \(h \) is the correct hash.

Given a random oracle \(RO \), one can instantiate a VRO by setting \(\pi = \perp \) and \(\text{VfyHash}(m, h, \pi) = [RO(m) == h] \).

Unlike the ROM, the VROM potentially allows “semi-interactive” protocols: Parties computing \(\text{VRO.Hash} \) must query VRO (interactively), but verifying hashes is possible non-interactively.

Scope of the work

1. A first modeling of the VROM as an “ideal functionality” in a suitable framework (e.g. real-ideal, UC, or CC) and a simple implementation.
2. Easy(?) applications of VROM: FDH-signature schemes, NIZK via from \(\Sigma \)-protocols via Fiat–Shamir, NIZK-PoK via Fischlin’s transformation. \[\text{Dam10} \mid \text{Fis05}\]
3. Improved implementations. Here, there several possible choices.

Requirements

Following prior knowledge is useful (or must be acquired while working on) the master’s thesis.

- Familiarity with advanced cryptography (e.g. suitable lectures or seminars).
- Knowledge in multi-party computation (MPC) and universal composability (UC) or constructive cryptography (CC), especially the real-ideal model for security definitions. See \[\text{Lin16} \] for a short introduction.
- Probability theory/analysis of algorithms (especially the runtime analysis of rewinding-based security reductions is non-trivial).

Contact

In case of interest or for further information, please contact Michael Klooß, michael.klooss@kit.edu

Literatur

[Dam10] Ivan Damgård. On \(\Sigma \)-protocols. 2010. URL: https://cs.au.dk/~ivan/Sigma.pdf
